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directly linked based on large-scale similarity
searches retrieved from HomoloGene
(National Center for Biotechnology
Information) and GeneDB (Sanger
Centre)*>. GermOnline can be searched by
author name, gene name, keyword,
expression profile and phenotype® (Fig. 1a).
The locus report pages provide curated
information (Fig. 1b) and links to relevant
external data sources. Likewise, major
databases, such as Swiss-Prot,
Saccharomyces Genome Database and
GeneDB, provide links to our database.
GermOnline is especially useful for genome
biologists, who often need to process and
interpret data on large numbers of genes for
which extensive literature is available.

GermOnline Release 2.0 contains
information on 684 genes from
Saccharomyces cerevisiae involved in meiosis
(Fig. 1c), spore formation and germination,
as well as about 30 prototype contributions
from other species. Microarray expression
data covering the yeast cell cycle’, yeast
sporulation®? (Fig. 1d) and spermatogenesis
in the rat (U.S. et al., unpublished data) are
provided, as well as external links to relevant
studies using S. cerevisiae,

Schizosaccharomyces pombe and
Caenorhabditis elegans. Release 2.0 is
accessible at http://www.germonline.org.
Detailed descriptions of how to retrieve and
contribute information, as well as the
database model and specifications, will be
published elsewhere!?. The approach
described is applicable to a wide variety of
conserved biological processes studied in
different species, including Homo sapiens.
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Chipping away at the chip bias:
RNA degradation in microarray analysis

To the editor:

Measurement of gene expression is based on
the assumption that an analyzed RNA sample
closely represents the amount of transcripts in
vivo. Transcripts show stability differences of
up to two orders of magnitude in vivo!, raising
the possibility that partial degradation during
cell lysis could cause a variable extent of bias in
quantification of different transcripts. One of
the most effective tools for characterizing RNA
integrity is capillary electrophoresis, in which
RNA degradation is indicated by an altered
285/18S rRNA signal ratio?. In the software of
the commonly used system (Bioanalyzer 2100,
Agilent), quantification of 18S and 28S rRNA
is compromised by the fact that this calculation
is based on area measurements that are heavily
dependent on definitions of start and end
points of peaks (Fig. 1a). Even accurate
determination of this ratio is not sufficient to
detect degradation efficiently (Fig. 1b). We
developed a mathematical model that results
in an objective number for quantitative
characterization of RNA degradation. Aside

from three prominent peaks (small RNAs, 18S
and 28S rRNA), a chromatogram of the size
distribution of cellular RNAs shows a broad
range of molecular weights with much weaker
signals. With increasing degradation, heights
of 18S and 28S peaks gradually decrease and
additional ‘degradation peak signals’ appear in
a molecular weight range between small RNAs
and the 18S peak (Fig. 1b). The ratio of the
average degradation peak signal to the 18S
peak signal multiplied by 100 will hereafter be
referred to as the degradation factor. This
analysis has been tested on 19 tissues of seven
organisms, and it is a reproducible parameter
for degradation of mammalian RNA
(Supplementary Table 1 online). As an
example, 12 repeated measurements of the
same sample yielded an average degradation
factor of 27.14 with a standard deviation of
1.06. Degradometer software for calculation of
the degradation factor can be downloaded
from http://www.dnaarrays.org.

If one RNA sample was intact and the
other was degraded during isolation, up to

three-quarters of the differential gene
expression measured was due solely to
differences in RNA integrity between two
samples (Fig. 1d). Supplementary Figure 1
online shows changes in mRNA levels caused
by alteration of RNA integrity. This effect was
independent of the algorithm applied to raw
data analysis (Supplementary Tables 2, 3 and
4 online).

For GAPD and ACTB, two transcripts for
which signal intensities from 3’ and 5
portions are frequently measured in
microarray analysis, there is a positive
correlation between the 3'/5' ratio and the
degradation factor of samples (Fig. 1¢). This
correlation is tissue-dependent
(Supplementary Fig. 2 online).The smaller
the difference in degradation factors between
samples, the more closely the measured
expression differences reflect biological
differences (Fig. 1d).

Aside from general RNase activity by
members of the RNase A family3, RNase L,
an enzyme activated in apoptotic
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Figure 1 Quantification of RNA integrity and
consequences of degradation for expression
analysis. (a) Chromatograms of RNA size
distribution. Area measurements for rRNA
calculation can be misleading owing to incorrect
definition of the area baseline. Shown is an
example of automatic baseline detection by the
Bioanalyzer software. (b) Green lines show intact
RNA (degradation factor 3.9 and rRNA ratio 1.8),
and red lines show degraded RNA (degradation
factor 22 and rRNA ratio 1.8). (¢) The
relationship between degradation factor and 3'/5’
ratios of GAPD (red) and ACTB (green), calculated
for RNA degraded after purification (squares) and
RNA degraded in its cellular environment
(triangles). For technical details see
Supplementary Methods online. The linear
correlations are R2 = 0.91 for GAPD and R? =
0.89 for ACTB. (d) False positive and negative
rates of differential gene expression due to
degradation. Comparison of expression profiles
from two different intact RNA samples is
considered the true differential expression pattern
(0% false results). Red represents false positive
results and green represents false negative results
of differential gene expression measurements,
caused by differential degradation of the two
samples. Results are shown for RNA degraded
after purification (squares) and RNA degraded in
its cellular environment (triangles). False negative
results show no obvious correlation with
differences in degradation factor, whereas false
positive results show a linear correlation (R2 =
0.63). (e) Effects of apoptosis on RNA size
distribution. RNA of NB4 cells, mock-treated
(green) or treated for 24 h with 5 mM valproic
acid to induce apoptosis’ (red). Fluorescence
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intensity of 28S rRNA is low relative to that of 18S rRNA. Two additional peaks (arrowheads) appear during apoptosis. (f) The relationship between the
28S/18S rRNA ratio and the percentage of annexin V—positive cells during apoptosis. The x axis shows duration of treatment with valproic acid.

pathways4, can alter the size distribution of
total RNA. During apoptosis, 28S rRNA is
cleaved more quickly than 18S rRNA (Fig.
le and ref. 4). The Degradometer software
output file contains the ratio of 285/18S
rRNA signal heights. This ratio allows
detection of apoptosis even before cells
become positive in annexin-V staining (Fig.
1f). Certain treatments of biological
samples ex vivo can induce apoptosis®,
causing bias in the results of gene
expression measurement. When we induced
apoptosis in cell culture, gene expression
profiles changed significantly
(Supplementary Fig. 1 online).
Reproducibility and reliability of results
obtained by microarray technology currently
are important goals of the field®. Minimum

Information About a Microarray
Experiment (MIAME) should allow
standardization and therefore
reproducibility. Inclusion of RNA integrity
parameters, such as the degradation factor
and the 285/18S signal heights, in MIAME
would help characterize the biasing effects of
RNA degradation and apoptosis on
microarray results.

Note: Supplementary information is available on the
Nature Genetics website.

ACKNOWLEDGMENTS

We thank H. Klump, S. M. Tanner and K. Becknell for
their critical reading of the manuscript. This work is
supported in part by a grant from the US National
Cancer Institute.

Herbert Auer!, Sandya Lyianarachchil,

David Newsom!, Marko I Klisovic?,
uido Marcucci® & Karl Kornacker®

1Division of Human Cancer Genetics,
2Department of Internal Medicine and
3Division of Sensory Biophysics, The Ohio State
University, Columbus, Ohio 43210, USA.
Correspondence should be addressed to H.A.
(auer-2@medctr.osu.edu).

1. Berger, S.L. & Cooper, H.L. Proc. Natl. Acad. Sci. USA

72, 3873-3877 (1975).

Van de Goor, T.A. PharmaGenomics 3, 16-18 (2003).

3. Rosenberg, H.F. & Dyer, K. Nucleic Acids Res. 24,
3507-3513 (1996).

4. Nadano, D. & Sato, T.A. J. Biol.
13967-13973 (2000).

5. Grasl-Kraupp, B. et al. Hepatology 25, 906-912

(1997).

Brazma, A. et al. Nat. Genet. 29, 365-371 (2001).

Gottlicher, M. et al. EMBO J. 20, 6969-6978

(2001).

N

Chem. 275,

No

NATURE GENETICS VOLUME 35 | NUMBER 4 | DECEMBER 2003

293



