
microRNA Dysregulation in Prostate Cancer: Network Analysis Reveals
Preferential Regulation of Highly Connected Nodes

by William T. Budd*a), Danielle E. Weaverb), Joe Andersonb), and Zendra E. Zehnerc)d)

a) Doctoral Program in Integrative Life Science, Virginia Commonwealth University, P.O. Box 842030,
Richmond, VA 23284, USA

b) Center for the Study of Biological Complexity Virginia Commonwealth University, P.O. Box 842030,
Richmond, VA 23284, USA

c) Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, P.O. Box
980614, Richmond, Virginia 23298, USA

d) Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA

microRNAs (miRNAs) are small RNAs shown to contribute to a number of cellular processes
including cell growth, differentiation, and apoptosis. MiRNAs regulate gene expression of their targets
post-transcriptionally by binding to messenger RNA (mRNA), causing translational inhibition or
mRNA degradation. Dysregulation of miRNA expression can promote cancer formation and
progression. Research has largely focused on the function and expression of single miRNAs. However,
complex physiological processes require the interaction, regulation and coordination of many molecules
including miRNAs and proteins. Highly connected molecules often serve important roles in the cell. A
protein�protein interaction network of established miRNA targets confirmed these proteins to be highly
connected and essential to the cell, affecting tumorigenesis, cell growth/proliferation, cellular death, cell
assembly, and maintenance pathways. This analysis showed that miRNAs contribute to the overall health
of the prostate, and their aberrant expression destabilized homeostatic balance. This integrative network
approach can reveal important miRNAs and proteins in prostate cancer that will be useful to identify
specific disease biomarkers, which may be used as targets for therapeutics or drugs in themselves.

Introduction. – Cancer is a highly heterogeneous, multifactorial disease that results
from numerous genetic mutations, aberrant gene expression, and microRNA (miRNA)
dysregulation [1]. Prostate cancer (CaP) is the second leading cause of cancer related
deaths of men in the United States with 193,000 men diagnosed in 2009. It is predicted
that nearly 27,000 will eventually succumb to the disease, and likely that one of every six
men will develop CaP during their lifetime. A variety of genetic and epigenetic factors
such as age, race, heredity, diet, sexual frequency, and physical activity are known to
influence the development of prostate tumors [2].

In recent years, miRNAs have emerged as an important class of non-coding RNAs
that influence post-transcriptional protein levels. In the presence of external cues and
environmental stressors, miRNAs have the ability to induce rapid changes in the
proteome allowing the cell to respond in a rapid, more precise, and energy-efficient
mechanism [3]. Numerous cellular processes are affected by miRNA, including
differentiation, growth/hypertrophy, cell-cycle control, and apoptosis [4]. Mature
miRNAs are ca. 22 nucleotides in length and regulate protein levels by binding mostly
to the 3’-untranslated region (3’-UTR) of a messenger RNA, inducing translational
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repression or message cleavage. Aberrant expression of miRNAs contributes to the
development of many pathological conditions, including cancers of the breast, prostate,
thyroid, and B-cell lymphomas [5] [6].

Many miRNA genes are dysregulated in cancer and influence tumor formation/
progression because they are located in regions of the genome that are commonly
overexpressed or deleted [7]. Dysregulated miRNAs have been shown to contribute to
oncogenesis by the loss of tumor-suppressing miRNAs or increased expression of
oncomiRs [8]. While tumor-suppressing miRNAs are lost or reduced during onco-
genesis, oncomiRs are amplified or overexpressed. Either loss of tumor suppressors or
increased expression of oncomiRs ultimately results in increased cell growth,
proliferation, invasiveness, or metastasis. Aberrant expression of even a single miRNA
has the potential to influence a large number of cellular processes, as it is predicted that
each miRNA has the potential to affect hundreds of proteins. Thus, dysregulation can
destabilize homeostatic balance by affecting levels of a multitude of target proteins.

Complex physiological processes can rarely be ascribed to a single molecule [9].
Instead, they arise out of the interaction and coordination of large numbers of proteins,
nucleic acids, and other macromolecules. Healthy organisms intricately regulate
thousands of components with remarkable fidelity and accuracy [1]. Protein�protein
interactions are essential to many biological processes and mediate many of the
reactions necessary to sustain life. A key strategy to understand the molecular workings
of the cell is the systematic identification of crucial protein interactions [10].

These interactions can be modeled as a biological network with proteins
represented as nodes and interactions among the proteins represented as edges.
Topological features of the network can be described mathematically and used to infer
molecular contribution to network/cellular stability. As observed, widespread miRNA
dysregulation contributes to the development of many forms of cancer including cancer
of the prostate. This work utilized a systems-based, network approach to understand
the impact of miRNA dysregulation on the overall stability of a protein�protein
interaction network.

Results and Discussion. – Analysis of miRNA Contributions to Prostate Tumori-
genesis. Dysregulation of miRNAs may result in tumor formation and progression
through the increased expression of oncomiRs or decreased expression of tumor
suppressors. Mir2disease is a manually curated database which associates experimen-
tally supported miRNA dysregulation with disease [11]. Consideration of only
experimentally established miRNA/disease associations will not reveal every miRNA
that is involved in prostate cancer. However, this approach is more favorable than
approaches that consider putative interactions, as they suffer from an inherent lack of
sensitivity evidenced by large numbers of false positive predictions. A search of the
miR2disease database reveals a total of 111 miRNAs that contribute to prostate
tumorigenesis and cancer progression when significantly dysregulated. It remains to be
determined whether or not miRNA dysregulation is the cause of tumorigenesis, a
consequence of tumorigenesis, or both. Previously, global decrease of miRNA
expression levels during tumorigenesis had been observed, leading to the hypothesis
that most miRNAs function as tumor suppressors [6]. Our analysis using the
miR2diease database revealed that there are approximately as many oncomiRs as
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tumor suppressing miRNAs. Sixty microRNAs showed increased expression levels
(oncomiRs) in tumor samples compared to normal tissue, whereas 51 miRNAs
decreased in tumor samples (tumor suppressors; Fig. 1).

Interestingly, there are eleven examples in which the same miRNA displays
contrasting behaviors in prostate tumors. These have the potential to act as either
oncomiRs or tumor suppressors during tumorigenesis. Their expression levels may vary
depending upon the degree of cellular de-differentiation. For example, hsa-miR-125b
(miR-125b) has been reported by several groups to significantly decrease during
tumorigenesis. MiR-125b coordinately regulates two members of the human epidermal
growth factor receptor family (ErbB2/HER2/NEU, ErbBB3/HER3) [3] [12 – 14].
Decreased expression or loss of miR-125b results in an increase in both ERBB2/
ERBB3 protein levels, thereby enhancing the invasive potential of the cell leading to
tumor formation and progression [15].

Conversely, the androgen-independent LNCaP sublines (CDS1 and CDS2) lead to
higher levels of miR-125b compared to the androgen-dependent LnCaP sublines [14].
Treatment of androgen-dependent LNCaP cells with synthetic miR-125b allowed them
to survive in androgen-depleted media. The cellular effects of miR-125b under
androgen-dependent conditions are mediated through the translational suppression of
BAK1 [3]. BAK1, a member of the BCL2 protein family, functions as a pro-apoptotic
factor [16]. Suppression of pro-apoptotic factors increases the oncogenic potential of
the cell.

A similar observation was made with hsa-miR-146a, which can function as an
oncomiR in many tumors, but in androgen-independent tumors functions as a tumor
suppressor [12] [17]. Altogether, these two examples illustrate how a single miRNA
(miR-125b, miR-146a) can function as a tumor suppressor or an oncomiR dependent
upon another variable, in these cases androgen dependence. Most likely similar
situations could be found for the other overlapping group members.

Protein�Protein Interaction of Prostate Cancer miRNA Targets Show Scale-Free
Behavior. Nearly every biological process depends upon protein�protein interactions
[18]. Disruptions or perturbations in these interactions underlie many human diseases
including cancer. Protein�protein interactions are modeled using a system-based,
network approach and described mathematically. Two protein�protein interaction

Fig. 1. MicroRNA Dysregulation in prostate cancer. microRNAs involved in prostate cancer progression
were extracted from the miR2Disease database along with their potential roles in cancer as defined by
their expression status. A Venn diagram illustrating the numbers of oncomiRs, tumor suppressors, and

miRNAs that can function as either a tumor suppressor or oncomiR was generated.
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networks were built from informations gathered from the PubMed, Online Mendelian
Inheritance in Men, and the US Patent Office databases using the Agilent Literature
Search plugin in Cytoscape. Topological network characteristics were determined using
CentiScaPe [19 – 21].

The first network was built using established targets of dysregulated miRNAs
shown to contribute to the development of prostate cancer. A second similar network
of randomly sampled proteins expressed in the prostate, but chosen without regard to
miRNA status, was compiled. Both the network of dysregulated miRNA protein
targets and randomly selected prostate proteins possessed a scale-free form (Fig. 2).
However, they differed in the average connectivity as determined by node degree with
the miRNA targeted network having a much higher average connectivity measure.
Node degree is a measure of interactions among the molecules in a network. In a scale-
free network, as the node degree increases, the frequency observed decreases, with
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Fig. 2. Targets of miRNAs involved in prostate cancer are more highly connected than randomly chosen
protein. Two shortest path protein�protein interaction networks were built using the Agilent literature
search function within Cytoscape 2.8 and topological measures evaluated using CenstiScaPe 2.76. The
first network was built using established targets of miRNAs that are dysregulated during the
development of prostate cancer (red). The other network was built from randomly chosen proteins that
are expressed in the prostate, but chosen without regard to miRNA status (blue). Frequency

distributions of the node degree for the two shortest path networks are displayed



most nodes having only a few connected neighbors. This functional organization
commonly seen in a complex system ensures redundancy in the system resulting in
some amount of fault tolerance [9].

miRNAs Dysregulated in Prostate Cancer Preferentially Regulate Highly Connected
Proteins. Node degree is one topological measure that can be used to infer the
contribution of a protein towards cellular/network stability. Analysis of the average
node degree revealed an overall enrichment of highly connected proteins in the
prostate cancer miRNA target network not seen in the network of randomly selected
prostate proteins (p�0.0001; Table 1). The average protein in the miRNA-targeted
network was connected to nearly 30 other proteins. Conversely, the average protein in
the randomly chosen network was only connected to approximately five others. Of the
top candidates in the prostate cancer miRNA-targeted network, mitogen-activated
protein kinase 14 (MAPK14) was the most connected with a node degree of 290. It is
important to note that the node degree represents a maximum protein potential, not all
290 proteins will interact with MAPK14 at the same time. Instead, MAPK14 will
interact with a small number of proteins at any moment, and the neighbors change
depending upon the needs of the cell. The most highly connected protein in our
randomly generated prostate network was only connected to 28 other proteins, a
tenfold difference. A list of prostate-cancer miRNA-targeted proteins with a node
degree over 200 is included in Table 2. This list is rich in well-known cancer related
proteins, many of which are current or proposed drug targets.

Perturbation of these highly connected nodes is more likely to negatively impact
network stability [1]. It has been shown that molecules with a higher node degree are
essential to the cell, and their loss often results in a disease state such as cancer [22] [23].
There is a positive correlation between protein essentiality and connectivity indicating
that the more connected a protein is, the greater the likelihood that it is essential to life.
Conversely, molecules with a lower number of connecting neighbors are not as likely to
disrupt the system when they are perturbed. Disease causing genes are more likely to
encode highly connected proteins [24] [25]. This analysis indicated that miRNAs have a
strong likelihood of impacting the network structure, and dysregulation is more likely
to affect essential proteins causing diseases like cancer.

Randomization of the prostate cancer miRNA-targeted network was performed to
estimate the likelihood that this arrangement arose out of chance. The network was
compared to a null model obtained by a shuffled (50,000 X) version of itself [26].
Shuffling was accomplished using an algorithm that preserves the overall node-degree
distribution in order to emulate the properties found in the prostate miRNA-targeted
network. The randomized networks did not result in a mean clustering coefficient (C¼
0.029) similar to the protein�protein interaction network (C¼0.621). This measure

Table 1. Comparison of Network Node Distribution of the Prostate Cancer miRNA Target Network and
the Randomly Chosen Prostate Protein Network

Network Mean degree Standard deviation Minimum Maximum

Prostate cancer miRNA target protein 29.80 47.75 1 290
Random prostate protein 4.46 4.24 1 28
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evidences that the arrangement of the proteins in this network is not random, but
results from clusters of associated proteins, as would be expected in a complex, living
system. Randomly generated networks of the same degree and distribution do not
maintain this modularity.

OncomiRs Regulate More Highly Connected Proteins Than Tumor Suppressors. A
one-way analysis of variance (ANOVA) revealed statistically significant connectivity
differences among the targets of oncomiRs and targets of tumor suppressing miRNAs
(F2,503¼6.2821, p¼0.002). Oncogenic miRNAs showed a regulatory preference
towards more highly connected proteins. While the connectivity of an oncomiR target
was 39, the average connectivity of a tumor suppressor miRNA target was only 27 other
proteins (Table 3). Interestingly, the targets of the eleven miRNAs that can function as
tumor suppressors or oncomiRs depending upon a second variable exhibited a much
higher average target node degree (61) than either oncomiRs or tumor suppressors
alone.

Cancer-related proteins in general show greater node degree and higher con-
nectivity than non-cancer associated proteins [27] [28]. The protein products of tumor-
suppressing genes are known to be more centrally located and more highly connected
than the products of oncogenes [29]. In our analysis, we found that the connectivity of
oncomiR targets was higher than the targets of tumor-suppressing miRNAs. It is
important to remember that miRNAs are negative regulators of protein translation,
and the targets of oncomiRs would be tumor suppressive proteins. This analysis
confirmed that miRNA dysregulation contributed to the development of prostate
cancer.

Highly Connected Proteins Possess More Than One miRNA-Binding Site. A
comparison of proteins in the prostate cancer miRNA-targeted network revealed that
there was a positive correlation between protein connectivity and the number of
different experimentally established miRNA binding sites in the 3’-UTR (Fig. 3). That
is, as a protein interacts with a higher number of other proteins, it is more likely to be
regulated by multiple miRNAs. miRNAs may act cooperatively through the simulta-
neous interaction of multiple miRNA species with the 3’-UTR of a transcript [30]. In
the case of vascular endothelial growth factor (VEGFA), multiple distinct binding sites
were observed in the 3’-UTR. Transfection with varying combinations of miRNAs
resulted in additive levels of translational repression. VEGFA was the third most highly
connected protein in our prostate cancer miRNA target network (Table 2).

Although not included in Table 2, another example of a highly connected protein
under multiple miRNA regulation is the cyclin-dependent kinase inhibitor 1A

Table 3. miRNA�Target Connectivity Changes with the Role of the miRNA

Description Number of nodes
regulated by
miRNA type

Node
degree

OncomiR (Expression increases during tumorigenesis) 192 39
Tumor Suppressor (Expression decreases during tumorigenesis) 276 27
Both (Exhibits both behaviors dependent upon a second variable) 37 61

CHEMISTRY & BIODIVERSITY – Vol. 9 (2012) 863



(CDKN1A). CDKN1A was regulated by the largest number of unique miRNAs (28)
and connects to 190 other proteins [31]. Many tumor-suppressor pathways are under
the control of CDKN1A, and its decreased expression increases the likelihood of
cancer development [32]. As a potent cell proliferation inhibitor, CDKN1A is an
important modulator of the cyclin-dependent kinases (CDK) that regulate cell-cycle
progression through the G1/S checkpoint. Loss of the CDK inhibitor allows the cell to
proceed through the cell cycle and diminishes the cell�s response to DNA damage.
Increased expression of any of the miRNAs that regulate CDKN1A would decrease
protein levels and induce oncogenic transformation. This analysis showed that
important proteins were regulated by multiple miRNAs, and dysregulation of any of
these miRNAs could result in a disease state such as cancer.

Conclusions. – Cancer is a multifactorial disease that arises from the accumulation
of genetic and epigenetic changes that lead to oncogenic transformation causing cells to
proliferate uncontrollably. miRNAs are an important class of translational regulatory
agents that affect cell proliferation, differentiation, cell cycle control, and apoptosis.
Increased expression of oncomiRs or decreased expression of tumor suppressors leads
to uncontrolled cell proliferation, invasion, and metastasis.

Because of the scale-free design of complex systems and a higher average node
degree, miRNA protein targets are more vulnerable to targeted attacks that may lead
to catastrophic cellular failures [9]. A single dysregulated miRNA has the potential to

CHEMISTRY & BIODIVERSITY – Vol. 9 (2012)864

Fig. 3. Proteins regulated by multiple miRNAs are more likely to be highly connected. Proteins were
grouped according to the number of miRNAs that have been established to regulate their translation.
The number of miRNAs that regulate a protein (independent variable) was plotted against the average
node degree of the targets (dependent variable), and a best fit linear equation was generated (y¼17.91,
x¼7.9; r2¼0.831). Proteins that were regulated by 6–10 miRNA species were grouped into a single

group, because there were only a few established examples regulated by more than 6 miRNAs.



induce a significant number of cellular changes by affecting multiple highly connected
proteins. It is important to consider that modulation of a single highly connected
protein node has the potential to affect hundreds of downstream targets, thereby
modifying multiple pathways resulting in considerable physiological fluctuation.
During the development of prostate cancer, there is wide-scale dysregulation of
miRNA expression affecting numerous highly connected, essential disease-causing
proteins and numerous cellular pathways.

By combining knowledge of miRNA dysregulation with topological descriptors of a
protein�protein interaction network, we may identify important proteins contributing
to tumor progression that have not been previously described. This analysis can be used
to identify newer, more relevant indicators of prostate cancer and may offer insights
toward the development of targeted molecular therapies.

The authors acknowledge several individuals that contributed to the development and implementa-
tion of this project. Danail Bonchev, Nihar Sheth, and Ryan Woodcock of the Center for the Study of
Biological Complexity at Virginia Commonwealth University offered insight and advice that influenced
this work. Carlisle Childress of the Virginia Commonwealth University Center for High Performance
Computing gave assistance with computational support for this project. This work was supported by
National Institutes of Health Grant CA152349 to Z. E. Z.

Experimental Part

Dysregulated miRNAs Contributing to Prostate Cancer. miRNAs associated with prostate cancer
(111) were compiled from the miR2disease online resource [11]. Utilizing the built-in search function for
miRNAs associated with a specific disease, the database was queried using the term �prostate carcinoma�
to identify miRNAs related to prostate tumorigenesis, and included both causal and unspecified
relationships. Using a PERL script, each miRNA was further evaluated to extract information regarding
its expression pattern and literature references for each dysregulated miRNA.

Established Targets of miRNAs Associated with Prostate Cancer. A comprehensive record of
established miRNA/gene interactions was assembled from the Tarbase and miRecords repositories of
experimentally supported miRNA targets downloaded in May 2011 [33] [34]. Utilizing a PERL script,
multiple entries were eliminated, and both resources were combined into a single non-redundant list.
Dysregulated miRNAs contributing to prostate cancer were associated with validated targets using our
comprehensive record.

Prostate gland transcriptome profiles were obtained from the Unigene database in order to build a
protein�protein interaction network of prostate-specific miRNA/target interactions [35]. Transcripts
that show any level of expression in the prostate gland were extracted and identifiers converted to
HUGO gene symbols using a PERL script. By combining the information obtained from the
miR2disease database, comprehensive miRNA/target interactions and the list of expressed transcripts in
the prostate, we compiled a total of 608 confirmed protein targets that are affected by miRNA
dysregulation in the prostate.

Literature Mined Prostate Protein�Protein Interaction Network. The Agilent literature search (v2.76)
tool was used in conjunction with Cytoscape 2.8 to infer two protein�protein interaction networks
[19] [36]. The first was built using known prostate-cancer miRNA targets. Each protein in the candidate
list of 608 known prostate-cancer miRNA target proteins was used as a search term in the Agilent
literature search tool, and the search was controlled to limited interactions to Homo sapiens with a
maximum of ten hits per search string/search engine. The second network was built in the same manner
using 608 randomly chosen proteins that are expressed in the prostate gland according to the Unigene
database but chosen without regard to known miRNA status [35]. Following network inference,
visualization was accomplished using Cytoscape, and topological network descriptors were estimated
using CentiScaPe [21].

CHEMISTRY & BIODIVERSITY – Vol. 9 (2012) 865



Randomization of Prostate miRNA Target Protein�Protein Interaction Network. The prostate-cancer
miRNA target network was shuffled 50,000 times using a degree preserving edge shuffle random network
plugin developed by engineers at Syracuse University and implemented in Cytoscape. The plugin was
downloaded (http://sites.google.com/site/randomnetworkplugin/Home) as a .jar file and installed in the
Cytoscape package. The application was run across two processors and repeated 50,000 times to generate
the best results.

Statistical Analysis. Differences in network distributions were evaluated using an Analysis of
Variance test (ANOVA) with significance set at probability �0.05. All statistical analyses were
performed using JMP 8.0 (Statistical Analysis Software Cary, NC). The distribution of node degree for
the prostate miRNA-targeted network and the randomly selected prostate protein network were created
using the R Project for Statistical Computing (http://www.r-project.org/).
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