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a b s t r a c t

MicroRNAs are small, non-coding RNA molecules that can complementarily bind to the mRNA 30-UTR
region to regulate the gene expression by transcriptional repression or induction of mRNA degradation.
Increasing evidence suggests a new mechanism by which miRNAs may regulate target gene expression
by binding in promoter and amino acid coding regions. Most of the existing databases on miRNAs are
restricted to mRNA 30-UTR region. To address this issue, we present miRWalk, a comprehensive database
on miRNAs, which hosts predicted as well as validated miRNA binding sites, information on all known
genes of human, mouse and rat.

All mRNAs, mitochondrial genes and 10 kb upstream flanking regions of all known genes of human,
mouse and rat were analyzed by using a newly developed algorithm named ‘miRWalk’ as well as with
eight already established programs for putative miRNA binding sites. An automated and extensive
text-mining search was performed on PubMed database to extract validated information on miRNAs.
Combined information was put into a MySQL database.

miRWalk presents predicted and validated information on miRNA-target interaction. Such a resource
enables researchers to validate new targets of miRNA not only on 30-UTR, but also on the other regions
of all known genes. The ‘Validated Target module’ is updated every month and the ‘Predicted Target mod-
ule’ is updated every 6 months. miRWalk is freely available at http://mirwalk.uni-hd.de/.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

MicroRNAs (miRNAs) are small, non-coding RNA molecules of
21–25 nucleotides in length that regulate the gene expression by
base–pairing with the transcripts of their targets i.e. protein-cod-
ing genes, leading to downregulation or repression of the target
genes [1]. However, target gene activation has also been described
[2]. miRNAs are transcribed from long primary transcript (pri-miR-
NAs) in the nucleus and processed into characteristic stem-loop
precursor miRNAs (pre-miRNAs) by the enzyme Drosha. Then
pre-miRNAs are transported into cytoplasm, where they are trans-
formed into small, single-stranded miRNAs with the help of Dicer
[3]. One strand of the mature miRNA enters the RNA-induced
silencing complex (RISC) and binds to the 30-untranslated region
(30-UTR) of the target mRNA through imperfect base-pairing. Previ-
ously it has been shown that 50 end of miRNA could be determinant
in target repression [4]. The 50 end sequence of miRNA is called
‘‘seed’’ and has a length of 6–8 nucleotides which is energetically
ll rights reserved.
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favorable for the miRNA target interaction [5]. Mutations in the
seed region of a miRNA sequence leads to an inactive interaction
[6]. The binding reduces the expression level of target protein by
a number of mechanisms including inhibition of translational initi-
ation [7], inhibition of elongation, and induction of deadenylation
which decreases mRNA stability and increases the rate of mRNA
degradation [8]. The miRNA gene family is one of the largest in
higher eukaryotes: more than 700 miRNAs have been identified
in the human genome [9], each of them having the potential to
bind to hundreds of transcripts. miRNAs are involved in diverse
regulatory pathways [10,11], as well as in disease development,
progression, prognosis, diagnosis and evaluation of treatment re-
sponse [12,13].

Computational prediction of miRNA targets is much more chal-
lenging in animals than in plants, because animal miRNAs often
perform imperfect base-pairing with their target sites [14], unlike
plant miRNAs which almost always bind their targets with near
perfect complementarity [15]. In the past years, a large number
of target prediction programs and databases on experimentally
validated information have been developed for animal miRNAs
[5,16–26].

For more than a decade, attempts to study the interaction of
miRNAs with their targets were focused to the 30-UTR region of
mRNAs. But recent studies on miRNA-target interaction revealed
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a new mode of action of miRNAs by which they may regulate the
gene expression by targeting promoter as well as amino acid cod-
ing (CDS) regions. Tay et al. demonstrated the existence of many
naturally occurring miRNA targets sites of miR-314, miR-296 and
miR-470 in the CDS of the genes Nanog, Oct4 and Sox2 [27]. Guang
et al. have shown that argonaute proteins can transport classes of
small regulatory RNA to distinct cellular compartments to regulate
gene expression [28]. In another study, Place et al. have demon-
strated that miR-373 targets the promoter sequences of E-cadherin
and CSDC2 genes to induce gene expression [29]. On the other
hand, a few experiments have indicated possible target sites in
the 50-UTR for e.g. [30]. Thus, it is of paramount importance to de-
sign a new approach which can identify putative miRNA binding
sites not only in the 30-UTR region, but also in other regions (pro-
moter, 50-UTR, and CDS) of a gene.

Here we present miRWalk (http://mirwalk.uni-hd.de/), a com-
prehensive database that provides predicted as well as validated
miRNA binding site information on miRNAs for human, mouse
and rat.
2. Materials and methods

2.1. Genome data acquisition

All sequences [mRNAs, 10 kb upstream flanking regions (as-
sumed promoter regions) and mitochondrial genes] and other nec-
essary information (EntrezID, mRNA and CDS length, gene location
and definition) of all known genes of human, mouse and rat were
downloaded by submitting identifiers i.e. RefSeqID, Ensembl gene
Fig. 1. Workflow of miRWalk algorithm and automated text-mining module. miRWalk co
miRWalk searches for the longest complementary matches between miRNAs and all dow
regions, i.e. Promoter, 50-UTR, CDS, and 30-UTR) and mitochondrial genes. Then the pro
sites) in the analyzed sequence is calculated by using a Poisson distribution. Afterwards, m
eight established miRNA-target prediction programs. ‘Validated Target’, performs an au
curated dictionaries. Finally predicted and validated information is stored in a relationa
IDs and official gene symbols to Entrez at GenBank [31] and
Ensembl [32] databases. miRNA sequences and other information
(e.g. Sanger name, MIID, genomic location of miRNA, stem loop se-
quence and other accession numbers like stem loop, and mature
sequence) were collected from miRBase [33]. For Comparative
analysis, DIANA-microT (version 3.0), miRanda (August 2010),
miRDB (April 2009), PicTar (March 2007), PITA (August 2008),
RNA22 (May 2008) and TargetScan/TargetScanS (version 5.1) pre-
dictions files were downloaded from their databases, while in case
of RNAhybrid, the prediction data was generated by running the
executable (version 2.1) of RNAhybrid on bwGRID server.

2.2. Compilation and curation of keyword dictionary

The gene and miRNA dictionaries for human, mouse and rat
were compiled from several databases: HUGO Gene Nomenclature
Committee (HGNC), Mouse Genome Database (MGD), Rat Genome
Database (RGD), gene-centered information at NCBI (Entrez Gene),
Targetscan and miRBase. The names, aliases, symbols, official
names, synonyms and database identifiers were merged into syn-
onym dictionaries. In the curation step, inappropriate synonymous
or expressions that would lead to ambiguous or wrong identifica-
tions were detected and removed as described [34]. The informa-
tion on diseases, organs, and OMIM disorders was extracted from
MeSH (Medical Subject Heading) and OMIM [35]. Whereas the
keywords on proteins known to be involved in miRNA processing
and cell lines were collected from PubMed database by reading
the publications. Collated information was then organized in sev-
eral lists. Then, these keywords were compiled, classified and
stored in different dictionaries according to disease, organ, cell line,
nsists of two modules, i.e. Predicted Target and Validated Target. ’Predicted Target’,
nloaded sequences. Afterwards, it classifies all identified hits in protein coding (four
bability distribution of random matches of a subsequence (longest miRNA binding

iRWalk compares the identified miRNA binding sites with the results obtained from
tomated text-mining search in the titles/abstracts of the PubMed articles by using
l database called ‘miRWalk’.
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OMIM (Online Mendelian Inheritance in Man) and miRNA process-
ing proteins. Simultaneously, the information on pathways such as
gene sets, names and pathway identifiers were retrieved from
KEGG [36] and Biocarta (www.biocarta.com) databases. Thereafter,
all the available abstracts that contained miRNA keywords in their
title and/or abstracts were downloaded from PubMed database.

2.3. miRWalk algorithm

The miRWalk algorithm is based on a computational approach
which is written in Perl programming language to identify multiple
consecutive Watson–Crick complementary subsequences between
miRNA and gene sequences as described in Fig. 1 (Predicted Target
module). miRWalk algorithm searches for seeds based on Watson–
Crick complementarity, walking on the complete sequence of a
gene starting with a heptamer (seven nucleotides) seed from posi-
tionS 1 and 2 of miRNA sequences. As soon as it identifies a hepta-
mer perfect base-pairing, it immediately extends the length of the
miRNA seed until a mismatch arises. It then returns all possible
hits with 7 or longer matches. These binding sites are then sepa-
rated on the basis of their identified locations (start, and end posi-
tions and regions) in the analyzed sequences. Then it assigns the
prediction results in five parts, according to promoter region, 50-
UTR, coding sequence (CDS), and 30-UTR and mitochondrial genes.

In addition, the probability distribution of random matches of a
subsequence (50 end miRNA sequence) in the analyzed sequence is
calculated by using a Poisson distribution [20]. It can be expected
that the longer perfect complementation of a seed is associated
Fig. 2. An overview of predictions within mRNA 30-UTR region by miRWalk and eight oth
putative targets of one or more miRNAs and covered 72% interactions. Whereas, the codin
and 80% of genes, respectively. See Supplementary Table 1 for more details on interacti
with a lower probability, thus the higher are the chances of an
effective miRNA-target interaction.

2.4. Incorporating other prediction databases in miRWalk

Comparative studies conducted with the earlier miRNA target
prediction programs suggested that no program was consistently
superior to all others [37,38]. Indeed, it has become a common
practice for researchers to look at predictions produced by several
miRNA-target prediction programs and focus on their intersection
[39,40]. Thus, miRWalk compares the identified miRNA binding
sites with the results obtained from eight established miRNA-tar-
get prediction programs. These eight established programs are
chosen on the basis of their popularity. Finally miRWalk incorpo-
rates all the predicted miRNA binding sites of the miRWalk algo-
rithm and of the eight programs as predicted information on
miRNAs into its database. All the putative targets (both matched
as well as unmatched with miRWalk prediction data) of other pro-
grams are stored in miRWalk database.

2.5. Automated text-mining search module

A new module was written in Perl programming language to
accomplish the automated text-mining task in the downloaded ti-
tles and abstracts from PubMed database against curated dictio-
naries. We chose abstracts because they are not only more
readily available than full text, but are also condensed descriptions
focusing on what is central to the study, combining the back-
er databases. In promoter region, more than 97% of the genes were identified as the
g, 30 UTR and 50 UTR regions covered 15%, 10% and 1.6% interactions on 97.8%, 88.5%

on data on all genes of human, mouse and rat, produced by miRWalk algorithm.
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ground, results and conclusions. Shah et al. [41], demonstrated that
the abstract section of articles contains the best proportion of key-
words, while the other sections are a better source of biologically
relevant data. In details, first the automated text-mining search
module downloads all the available abstracts in XML (Extensible
Markup Language) format that contained keywords such as ‘micr-
oRNA’, ‘miRNA’, ‘micro-RNA’, ‘micro_RNA’, ‘micro RNA’, ‘miR’ in
their title and/or abstracts. Thereafter, the keywords from curated
dictionaries are detected in the texts of downloaded titles/ab-
stracts (Name Entity Recognition, NER) by string matching script
with the help of Perl regular expressions. The identification of
named entities allows identifying miRNA terms linked with genes,
diseases, organs, cell lines, pathways, OMIM disorders and proteins
known to be involved in miRNA processing in an abstract. Then
these relationships are processed and stored along with their Pub-
Med identifiers as validated information under Validated Target
module of miRWalk database as shown in Fig. 1 (Validated Target
module).
2.6. Data processing

After sequence acquisition, miRWalk algorithm was executed to
produce putative miRNA binding sites on all downloaded se-
quences. The bwGRID Cluster (high performance cluster facility)
has been used to run miRWalk algorithm in a batch mode by
adopting four nodes with 32 processors for the faster identification
of miRNA binding sites and computing of probability. After the
identification of the miRNA binding sites with miRWalk, the pre-
dicted miRNA-target interactions data on 30-UTR of all known
Fig. 3. Overview of the predictions produced by miRWalk algorithm. More information
Table 2.
genes of human, mouse and rat were obtained from eight estab-
lished miRNA-target prediction programs for the comparison of
the results with different algorithms. The predicted miRNA-target
interaction data on more than 2000 miRNAs generated by both
miRWalk and eight established miRNA-target prediction programs
was documented in the Predicted Target module.

For validated information, the dictionaries for human, mouse
and rat were created from several databases as described in com-
pilation and curation section of this paper. In a keyword identifica-
tion step, a newly developed automated text-mining search
module was used to detect gene and miRNA names in the down-
loaded PubMed abstracts against curated dictionaries by using
NER. Then the collated information was processed and stored un-
der Validated Target module of miRWalk database.
3. Results

3.1. miRWalk database and web interface

miRWalk is implemented as a relational database on a MySQL
database management system. The web interface of miRWalk
database is divided into two modules: (i) Predicted Target module
and (ii) Validated Target module.

The Predicted Target module is classified into six parts: Target
Gene, miRNA, Pathway, Chromosome, OMIM and Mitochondrial
Target. There are two options implemented for user input, i.e.
entering the gene symbols or EntrezIDs either directly into a text-
box area or by uploading a file under Target Gene and MicroRNA
Target search pages. Whereas other predicted search pages can
on the estimation of predictions in different databases is given in Supplementary
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be easily queried by a simple selection of drop down lists for e.g.
Pathway Target search page can be easily inquired by choosing a
pathway name from the given drop down list, to determine how
many genes of a selected pathway are the targets of similar and/
or different miRNAs. The result tables of all searches display only
20 records and appropriate links are given, which redirect the user
to NCBI, Ensembl, UCSC, miRBase, KEGG, Biocarta and OMIM dat-
abases for more annotation and further information on the results.
Moreover, one can view and/or download the complete result
tables by clicking on the providing links such as ‘View Complete
Table’, ‘Paging View’ and ‘Download Table’.

The Validated Target module has different search pages. These
search pages are organized similar to Predicted Target module
and are called; Target Gene, miRNA, Pathway, Disease, Organ, Cell
line, miRNA literature, OMIM disorder and miRNA Processing Pro-
teins. The results of this module are hyperlinked to PubMed data-
base. More information on web interface can be found in
Supplementary material.

3.2. Overview of predictions produced by miRWalk and eight
established databases

Since miRNA-target prediction programs are designed with dif-
ferent combinations of features to perform the same task, it is
essential to analyse the distribution of these predictions across
miRWalk and eight established miRNA-target prediction programs.
We count over seven million predictions in both miRanda (36,507
genes and 2050 miRNAs) and PITA (37,714 genes and 1458 miR-
NAs), whereas over 4 million unique predictions (only single bind-
ing site of a miRNA per 30-UTR region) are counted on 30-UTR by
miRWalk algorithm which cover over 40,491 genes (from all three
species) and 2057 miRNAs (Fig. 2). An overview of miRWalk pre-
dictions on different regions is presented in Fig. 3. In a comparative
Fig. 4. Percentage of overlapping miRNA predictions across two or more databases. In
combinations of 10 datasets and obtained a small overlap i.e. only 79 predictions (73
miRanda, miRDB, miRWalk, Pictar4/5, PITA, RNA22, RNAhybrid, Targetscan) considere
Supplementary Table 3 for more information.
study, the predictions are decreasing to a surprisingly small 79 re-
cords (73 genes and 34 miRNAs) identified in 10 datasets of nine
databases considered (Fig. 4). Fig. 4 depicts overlaps of predictions
among nine different databases (including miRWalk predictions on
30-UTR region) and indicates that although it shows low total over-
lap among all databases, in spite of that there is considerable sim-
ilarity between at least five prediction databases.

3.3. Evaluation of miRWalk algorithm

We compared the performance of miRWalk with respect to
eight already established programs. For evaluation we selected a
set of genes (positive and negative sets) from TarBase (version
5.0) [42], miRecords (version 3) [21] and miRTarBase (release
2.1) [43] databases on which miRNA binding sites are already ver-
ified and published in the PubMed database. We analyzed 1870 po-
sitive miRNA-target and 61 negative miRNA-target pairs for the
performance of different prediction programs. The positive and
negative datasets were given as input to each of these programs
by using ‘Target Gene’ which is implemented under Predicted Tar-
get module of miRWalk database and the output was analyzed to
calculate the Accuracy (Acc), Recall and Precision. The results of
the miRWalk algorithm and other are presented in Fig. 5. miRWalk
algorithm successfully obtained (97.93% Accuracy, 98.88% Recall
and 98.98% Precision) on the input gene sets and the results iden-
tified by 8 other programs are shown in Fig. 5.

3.4. Overview of validated data among miRWalk, TarBase,
miR2Disease, miRecords, and miRTarBase databases

We compared Validated Target module of miRWalk with Tar-
Base, miR2Disease [44], miRecords, PhenomiR [45] and miRTar-
Base databases in terms of relationships documented on miRNAs,
comprehensive analysis, we compared predicted miRNAs binding sites in different
genes and 34 miRNAs) were common in all 10 datasets of 9 databases (DianamT,
d. However, there is a considerable overlap between at least five datasets. See



Fig. 5. Evaluation of miRWalk algorithm and eight established prediction programs. In this analysis, 1870 positive and 61 negative miRNA-target pairs were chosen to
calculate the performance of the miRWalk algorithm and eight established prediction programs. In order to evaluate the performance of these different prediction programs,
we used the statistical parameters, viz., Accuracy (Acc), Recall and Precision. These parameters are based on number of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) and are calculated by using the following equations: Accuracy (Acc %) = (TP + TN)/(TP + TN + FP + FN) � 100, Recall (%) = TP/(TP + FN) � 100 and
Precision (%) = TP/(TP + FP) � 100.
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genes, diseases, organs, cell lines, OMIM disorders, pathways, miR-
NA processing proteins (MPP) and PubMed articles. These dat-
abases are not only chosen due to their popularity, but also for
surveying pertinent literature. For comprehensive analysis, we
downloaded TarBase 5.0, miR2Disease (June 2010 release), miRe-
cords (release 3.0) and miRTarBase (release 2.1) files from their
respective websites and parsed the information only on human,
mouse, and rat genes along with miRNAs. The validated informa-
tion of PhenomiR was taken from the database home page and
its publication. The Validated Target module of miRWalk database
increased the validated information more than 3-fold (1572 miR-
NAs linked to 5080 genes, 691 diseases, 556 organs, 121 cell lines,
2033 OMIM disorders, 375 pathways and 70 MPP) as compared to
above mentioned databases. Fig. 6 depicts an overview of the data
stored in miRWalk and five other existing databases.

3.5. Evaluation of validated information of miRWalk database

For the evaluation process, a recall of EntrezGene PubMed arti-
cles was conducted. In details, first, we collected Entrez Gene Iden-
tifiers of human, mouse and rat miRNAs. Collected identifiers were
compiled in a unique identifiers list. Second, a script was written in
Perl programming language which automatically extracts all Pub-
Med article Identifiers (PMID) which are marked as relevant for
an input miRNA Entrez GeneID. A total of 1360 unique PMID were
found to be marked as relevant. Afterwards, these PMIDs were
queried against PubMed database to download their titles and ab-
stracts. Then, the downloaded articles (only titles and abstracts)
were scanned for miRNA name by using automated text-mining
search module. Twelve hundred twenty-five out of 1360 abstracts
were found to have at least one miRNA name present in their titles
and/or abstracts. Thus, we obtained a recall of 90.07%. For the
remaining 10% of articles, we randomly selected 50 PMIDs out of
135 and read their titles/abstracts for miRNA names. After reading,
we observed that the randomly selected articles do not have any
miRNA names present in their titles/abstracts, but other keywords
like ‘microRNAs’, ‘miRNAs’, ‘miRs’, ‘human genome sequencing’ etc.
were present. Since, several articles do not have any miRNA name
in their titles/abstract. Therefore, we can expect that the auto-
mated text-mining search module can achieve a recall of more
than 90.07%.

4. Discussion

miRWalk database is different from existing miRNA resources
as: (i) a newly developed algorithm is used to predict all the pos-
sible miRNA binding sites by ‘‘walking’’ on the genes of three gen-
omes (i.e. all protein coding genes, and their 10 kb upstream
flanking regions and mitochondrial genes); (ii) the results of miR-
Walk are presented together with the results obtained from eight



Fig. 6. Overview of validated data stored in miRWalk and five existing databases. Overview of the relationship information stored under Validated Target module of miRWalk
and five existing database on miRNAs linked to genes, diseases, organs, OMIM disorders, cell lines, microRNA processing proteins and genes linked to human biological
pathways. See Supplementary Table 4 for more information.
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already established miRNA-target prediction programs for a com-
prehensive view of predicted miRNA binding sites on mRNA 30-
UTR region; (iii) miRWalk provides a more holistic view of genetic
networks of miRNA-gene-pathways and miRNA-gene-OMIM disor-
der interactions; and (iv) miRWalk hosts new and unique features
on experimentally validated miRNAs. Besides validated informa-
tion, it also offers the information on proteins known to be in-
volved in miRNA processing and available literature on miRNAs.
A comparative analysis of features of miRWalk and already estab-
lished databases on miRNAs is shown in Supplementary Table 5.

The ‘Validated Target module’ is updated every month and the
‘Predicted Target module’ is updated 6 months by executing auto-
mated Perl (www.perl.org) and Bioperl (www.bioper.org) scripts
on the server of bwGRID Cluster (http://www.urz.uni-heidel-
berg.de/server/grid/index.en.html).

Similar to miRGator, which integrates three prediction dat-
abases (miRanda, PicTar and Targetscan), miRWalk integrates eight
databases for a comprehensive study of predictions obtained from
different algorithms. This allows the user to take more control over
the prediction data that they consider. Not only does our resource
conveniently incorporate eight different databases at one place, it
also allows users to choose which combinations of databases they
would like to consider for their search.

Some research groups have been adopting a new approach for
the identification of new targets for known miRNAs. In this ap-
proach, miRNA expression in healthy and/or diseased tissue and/
or organ was profiled by using miRNA microarray and statistical
significant miRNAs were selected for further validation by North-
ern blot and/or q-PCR experiments. Afterwards, miRNA-target pre-
diction programs were used to identify the possible target genes of
these miRNAs. Finally, cell lines and/or animals were used for the
knockdown of these miRNAs to measure the expression level of
predicted genes. miRWalk database is helpful for this kind of ap-
proach, as a user can retrieve information on possible miRNA bind-
ing sites on the complete sequence or specific region(s) of targets
by supplying miRNA names or uploading a file under Predicted
Target module.
Moreover, the basic information on miRNAs (like mature, and
stem loop sequence, identifiers, chromosome, strand and band)
as well as other necessary data required for a miRNA research, such
as regulatory binding sites on upstream and/or downstream flank-
ing regions of pre-miRNA, information on the host gene of miRNA,
which miRNAs share a similar seed with the user input miRNAs can
be easily obtained. Furthermore, links are given, which redirect the
user to NCBI, UCSC (for more annotations and information on miR-
NAs) and PubMed database for the quick and convenient access to
available literature on the user input miRNAs associated with
expression, diseases, organs and cell lines.

In the past couple of years, research groups demonstrated the
involvement of miRNAs in complicated biological processes/path-
ways, including the control of developmental timing, haematopoi-
etic cell differentiation, apoptosis, cell proliferation, organ
development [10,11,46,47], as well as cancerogenesis [48–51]
and other human diseases [40,52–57]. miR2Disease and PhenomiR
are well known databases which offer information on miRNA inter-
actions involved in diseases and biological processes. miR2Disease
hosts 2663 relationships linked with 347 miRNAs whereas Pheno-
miR offers 12,192 relationships on 675 miRNAs linked to 146 dis-
eases. In comparison to these resources, miRWalk database hosts
98,887 relationships on 1572 miRNAs from human, mouse and
rat linked to 691 diseases. Thus, miRWalk presents much more
information on miRNAs linked to human diseases.

Cell lines have been established in life sciences as easy to
manipulate model systems for the study of cellular processes. A
number of cell lines have been used to investigate the expression
of miRNAs under different conditions. Such information is impor-
tant because of the therapeutic potential of miRNAs in various dis-
eases. miRWalk documents information on 121 cell lines linked to
miRNA investigations.

Several studies in mice have demonstrated an important role of
Dicer in the generation of mature miRNAs [58,59]. In contrast to
the linear miRNA processing pathway that was initially thought
to be universal for the biogenesis of all mature miRNAs, multiple
discoveries led to the recognition of miRNA-specific differences,
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that open a plethora of regulatory options to express and process
individual miRNAs differentially. For instance, Drosha-mediated
cleavage can regulate individual miRNAs: the hnRNP A1 binds spe-
cifically to pri-miR-18a and facilitates its processing [60]. Thus,
information on proteins known to be involved in miRNA process-
ing is helpful for researchers investigating the role of miRNAs in or-
gan development and functional maintenance. This kind of
information is lacking in the established miRNA databases hosting
validated miRNA-target data, while it is implemented under the
Validated Target module of miRWalk.

miRBase, TarBase, miRecords and miR2Disease are well-known
databases for experimentally validated miRNA targets associated
with genes, diseases, organs, and pathways. The Validated Targets
module of miRWalk offers all the scattered information about miR-
NA interactions in a structured and uniform format. All the infor-
mation of this module is extracted from PubMed database. Each
of these entries is hyper-linked to PubMed database by using Pub-
Med identifiers and allowing the retrieval of abstracts.

5. Conclusion

In conclusion, we developed a new platform on predicted as
well as validated binding sites of miRNAs on the sequence of all
known protein coding and mitochondrial genes of human, mouse
and rat. In the future we will incorporate the same information
on other species into miRWalk database. Furthermore the web
interface will be improved and new modules for additional annota-
tions will be added. Also an online tool for a motif search will be
incorporated to query against input sequences of interest.
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