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MicroRNAs (miRNAs) and transcription factors control eukaryotic cell 

proliferation, differentiation and metabolism through their specific gene regulatory 

networks. However, differently from transcription factors, our understanding of the 

processes regulated by miRNAs is currently limited. Here, we introduce gene 

network analysis as a new means for gaining insight into miRNA biology. A 

systematic analysis of all human miRNAs based on Co-expression Meta-analysis of 

miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs 

and provides a comprehensive, genome-scale analysis of human miRNA regulatory 

networks. Moreover, gene co-targeting analyses show that miRNAs synergistically 

regulate cohorts of genes that participate in similar processes. We experimentally 

validate the CoMeTa procedure through focusing on three poorly characterized 

miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the 

TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show 

that miR-519d and miR-190 inhibit, while miR-340 enhances, TGFβ signalling and 

its effects on cell proliferation, morphology and scattering. Based on these findings, 

we formalize and propose co-expression analysis as a general paradigm for second-

generation procedures to recognize bona fide targets and infer biological roles and 

network communities of miRNAs. 

 

MicroRNAs (miRNAs) are small noncoding RNAs that have basic roles in the control of 

gene expression (Bushati and Cohen 2007). They carry out their functions in animal cells 

by binding, with imperfect base pairing, to complementary sequences in the 3’-

untranslated regions (3’UTRs) of their target mRNAs. This results in down-regulation of 

target expression, at either the transcript or the translational level (Baek et al. 2008; 

Selbach et al. 2008; Guo et al. 2010). 

Over the last decade, miRNAs have emerged as important and evolutionarily 

conserved regulators of various physiopathological processes, from development to 

cancer (Meola et al. 2009; Visone and Croce 2009). As in the case of transcription 

factors, target identification is key to an understanding of the functions of miRNAs. The 

analogies between these two classes of regulatory molecules include the specificity of the 

sequences they target and a certain degree of flexibility in the composition of these 
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sequences. However, decades of molecular studies on transcription factors have revealed 

that their actions are largely combinatorial, i.e. their specific effect – activation or 

repression of gene expression – is strictly dependent on the local chromatin 

microenvironment, which in turn is an expression of the combination of multiple factors, 

such as cell type and a plethora of internal and external stimuli. In this regard, one of the 

most notable features is that the same transcription factor can activate or repress gene 

expression and even change binding specificities according to its dynamic interactions 

with other transcription factors and co-activators (Chen et al. 2011). Combinatorial 

effects multiply the complexity of transcription factor gene regulatory networks, as well 

as the efforts needed for their dissection. In contrast, miRNAs appear to have less flexible 

specificities and effects: they basically repress gene expression through binding to few 

subtypes of target sequences, the compositions of which are dictated by their ‘seed’ 

sequence (Bartel 2009). Moreover, they do not appear to have the same combinatorial 

logic as transcription factors, but rather more plain synergic or additive effects when 

multiple miRNAs target the same mRNA (Tsang et al. 2010). 

These simpler features give much more appeal to the dissection of the miRNA 

regulatory networks through the computational identification of their targets. Indeed, the 

first tools for miRNA target identification were developed shortly after the emergence of 

miRNAs as regulatory factors of cellular metabolic processes and animal development. 

These ‘first-generation’ tools have taken into account sequence-based features, like 

miRNA-mRNA complementarity at the seed region (Rehmsmeier et al. 2004; Krek et 

al. 2005; Miranda et al. 2006; Betel et al. 2008; Maragkakis et al. 2009; Thomas et al. 

2010), the evolutionary conservation of target sequences (Friedman et al. 2009), their 

numbers (John et al. 2004), and their accessibility, as predicted by analysis of secondary 

structures (Kertesz et al. 2007). However, current computational methods have intrinsic 

limitations due to the imprecise complementarity between mRNA/miRNA sequences in 

animal systems and an overall low specificity that results in a large number of false 

targets among the predictions (Didiano and Hobert 2006). Moreover, a substantial lack of 

overlap between the various algorithms has been reported (Saito and Saetrom 2010), 

which suggests that additional parameters should be considered for the development of 

more comprehensive prediction algorithms. Recent methods for reducing the number of 
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false positives include expression analysis to detect inverse correlations between miRNA 

and mRNA transcriptional behaviors, and they have required the use of specific 

microarray platforms that contain probes for miRNAs (Huang et al. 2007; Hausser et al. 

2009; Ulitsky et al. 2010). Alternative methods included the use of miRNA host genes 

as proxy for measuring the expression of the embedded miRNAs (Gennarino et al. 2009). 

Here, we perform a comprehensive analysis of human miRNA regulatory 

networks by focusing on the expression relationships among miRNA targets. We have 

developed a strategy based on Co-expression Meta-analysis of miRNA Target genes 

(CoMeTa) to integrate expression data from hundreds of cellular systems and multiple 

tissues. CoMeTa analysis of 675 human miRNAs was used to effectively select bona fide 

miRNA target genes by ranking them according to their degree of co-expression. 

Subsequent analyses of clusters of miRNA targets have led to the association of specific 

miRNAs with biological function(s) at high resolution. Furthermore, network analysis 

has resulted in a comprehensive map of miRNA-miRNA functional interactions based on 

the overlap among their target cohorts of genes. We validated the CoMeTa procedure by 

experimental assays focused on the control on the TGFβ pathways exerted by three 

previously uncharacterized miRNAs.  

 

Results 

The CoMeTa procedure 

We hypothesized that the targets of a given miRNA are co-expressed with each other, at 

least in certain tissues/conditions, i.e., they belong to the same gene regulatory network. 

Based on this assumption, we devised a strategy for the general inference of miRNA 

downstream regulatory networks through analysis of the expression correlations of their 

putative targets (CoMeTa). 

A scheme for the rationale of CoMeTa is shown in Figure 1A. For each miRNA, 

the procedure was seeded by using the predicted targets from three sequence-based 

prediction tools, miRanda (Betel et al. 2008), PicTar (Krek et al. 2005) and TargetScan 

(Friedman et al. 2009). The overlap among these algorithms is often limited, and thus 

together they should ensure consistent coverage for target prediction. The expression 

relationships between predicted targets were calculated by analyzing thousands of 
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publicly available expression microarray experiments that are representative of multiple 

tissues and conditions. For each miRNA target, a co-expression list was calculated, where 

any other gene was ranked according to its positive expression correlation with the given 

target. We recently used a similar approach to identify a gene network that regulates 

lysosomal biogenesis and function (Sardiello et al. 2009). 

Using this ranking system, a gene under the control of a given miRNA is expected 

to generate a co-expression list that is enriched with other target genes of the same 

miRNA at the top positions, because of the positive correlations among their expression. 

However, most genes are subject to multiple transcriptional controls. This implies that a 

gene under the control of N factors is expected to generate a co-expression list that is 

enriched at the top positions with genes under the control of the same N factors, including 

the targets of the given miRNA (Fig. 1A). The co-expression lists associated with a 

collection of putative miRNA targets will therefore be enriched for genes controlled by 

multiple factors, specific to each target. However, they will be collectively enriched for 

the targets of the given miRNA (see Fig. 1A). Based on this hypothesis, for each 

collection of putative targets we generated a “co-rank” list by taking into account the 

average target ranking in their respective lists. This procedure was expected to produce 

two notable outcomes: first, the true targets, including genes missed by sequence-based 

prediction tools (the false negatives), would rank higher than non-target genes in the co-

rank list, because of their higher average ranking in the single co-expression lists (see 

Fig. 1A). Second, based on the same principle, genes that are not targets of the given 

miRNA would rank low, including false positives from sequence-based prediction tools. 

We applied this procedure to all of the known human miRNAs (n = 675; 

miRBase, release 13.0) and we obtained the corresponding lists of the co-regulated 

targets ranked according to their expression concordance (Co-rank and CoMeTa lists, 

Fig. 1A). 

 

CoMeTa is effective in the recognition of true-positive miRNA targets 

To test the efficacy of the procedure, we built three independent datasets of previously 

validated miRNA targets (DS1, DS2, DS3) that were derived from the analysis of 

available data. DS1 was built using high-confidence miRNA–target pairs that had been 
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validated experimentally, and includes 270 target genes coupled with 84 miRNAs 

(Supplementary Table 1) (Papadopoulos et al. 2009); DS2 includes 671 target genes 

coupled with eight miRNAs, identified through pSilac experiments (Baek et al. 2008; 

Selbach et al. 2008); and DS3 includes 162 target genes coupled with three miRNAs, 

identified by transcriptome analysis (Lim et al. 2005).  

The analysis of the CoMeTa lists showed that >90% of the validated targets from 

DS1 and >80% of the targets identified by high-throughput analyses (DS2, DS3) fall 

within the first 50th percentile of their respective ranked lists (P <10-20 for all of the 

datasets) (Fig. 1B), thus demonstrating the validity of the procedure. A comparison with 

the scoring systems of TargetScan, PicTar and miRanda showed that CoMeTa’s ranking 

system improves miRNA target prediction efficiency in all three datasets analyzed (DS1, 

DS2 and DS3, Supplemental Fig. S1). 

We also evaluated the performance of the CoMeTa procedure for the 

identification of validated targets that escaped recognition by the sequence-based 

prediction algorithms used to seed the procedure (n = 25 in DS1; Table S1). Interestingly, 

we found that most of these targets have high rankings in their respective miRNA co-rank 

lists (21 out of 25 above the 50th percentile; P <10-3). Therefore, to identify putative, 

additional targets for each miRNA, we carried out a de-novo analysis of the 3’UTRs of 

all genes to search for canonical miRNA seeds (7-mer-A1, 7-mer-m8 or 8-mer sites)  

(Bartel 2009). The lists of these additional targets (AT lists; Fig. 1A) are available 

through the CoMeTa website (http://cometa.tigem.it/site/index.php), along with their 

ranking positions.  

 

Inference of miRNA gene networks and association with biological functions 

We hypothesized that co-expression analyses can drive the prediction of the functional 

pathways controlled by miRNAs. To test this hypothesis, for each miRNA, we clustered 

the targets that showed the highest extent of co-expression, a procedure hereafter referred 

to as CO-Operational Level (COOL) analysis. We systematically carried out COOL 

analyses for all of the human miRNAs and found that predicted targets tended to 

aggregate in discrete co-expression clusters, compared to random groups of miRNA 

target genes of similar size (Fig. 2A, and Supplemental Fig. S2). We then selected the co-
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expression clusters that showed greater significance over the control clusters (R-squared 

[R2] ≤0.91; see Methods for details). A total of 508 co-expression clusters (for 508 

miRNAs) were retained as the most statistically significant. Of note, these clusters were 

significantly enriched for the validated miRNA targets in DS1 (77% of the total; P <10-5) 

(Fig. 2A), which indicates that the miRNA targets indeed tend to aggregate in co-

expression clusters. As an additional control, we mapped on the COOL clusters the genes 

that we previously found to be down-regulated upon transient overexpression of miR-26b 

and miR-98 in HeLa cells (Gennarino et al. 2009). Gene-set enrichment analysis of these 

genes showed that down-regulated genes (i.e., the most likely direct targets) were 

significantly enriched in clusters with R2 <0.91 (Fig. 2B,C). 

Next, to assign biological functions to human miRNAs, we performed gene 

ontology (GO) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway 

analyses of the significant COOL clusters. These analyses associated hundreds of non-

redundant developmental or metabolic functions with specific miRNAs. The diagram in 

Figure 2D shows that miRNAs were associated with virtually every known functional 

macro category, from cell housekeeping (cell components, trafficking and metabolism) 

and regulatory pathways (cell signaling, gene expression, response to stimulus, apoptosis) 

to development, reproduction and cancer. In each macrocategory, the resolution of the 

analysis for specific pathways was remarkable. For example, miRNAs associated with 

intracellular trafficking could be mapped to several distinct pathways, including 

endocytosis (miR-1/103/106a/106b/107), ER-to-Golgi (miR-1/1323/19a/23a/23b) and 

Golgi (let-7c/7e and miR-1182/1183/1202) vesicle transport, phagocytosis (miR-

1257/182/524-5p), and axon cargo (miR-103/107/143/16/195). Similarly, miRNAs 

associated with gene expression were differentially assigned to pathways regulating 

epigenetic control (miR-1/1202/1253/1266), basal transcription-factor activity (miR-

1294/181b/181c/26a/26b), and RNA processing (miR-105/107/1179/1183), silencing (let-

7b/7c and miR-1205/184/298) and translation (let-7 family and miR-1183/1205/1236). 

Functions were assigned with high confidence to all 508 miRNAs with significant co-

expression clusters, and the results showed high concordance with the miRNA functions 

that had been determined experimentally (135 such cases are given in Supplemental 

Table 2). Examples include: miR-155, which is involved in hematopoiesis (Kluiver et al. 
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2006) and immunity (Rodriguez et al. 2007) (Fig. 3A); miR-1, which has a role in heart 

development (Sayed et al. 2007) (Fig. 3B); miR-130a, which has been identified as a pro-

angiogenic miRNA (Chen and Gorski 2008) (Fig. 3C); miR-106b and miR-93, which are 

known potent inhibitors of transforming growth factor (TGF)β signaling (Petrocca et al. 

2008a); and the miR-29 family, whose members miR-29a and miR29c, but not miR-29b, 

have been associated with regulation of the Wnt pathway (Kapinas et al. 2009). Notably, 

COOL analyses also correctly distinguished between closely related members of the 

same family, i.e. miRNAs that share the same seed sequence, as in the case of the miR-29 

family. Dozens of critical biological processes were associated for the first time with 

miRNA regulation, e.g., neuronal migration (hsa-miR-20b), muscle-tissue development 

(hsa-miR-655), the BMP signaling pathway (hsa-miR-1252), and many others (see 

Supplemental Table 2). 

In addition to providing putative functions to most human miRNAs, these results 

also strengthen the hypothesis that miRNAs act as global regulators of specific pathways, 

a function that has classically been attributed to transcription factors. 

 

miR-519d, miR-190 and miR-340 are involved in regulation of the TGFβ signaling 

pathway 

The high concordance between CoMeTa COOL analysis and literature data prompted us 

to test some of the novel associations with miRNA functions generated by our procedure. 

Among the miRNAs associated by COOL analysis to TGFβ signaling, miR-519d, miR-

190 and miR-340 showed the most significant enrichment (see CoMeTa database, and 

Fig. 3D-F). A detailed analysis of the CoMeTa associations showed indeed that these 

miRNAs are predicted to target most genes participating in the TGFβ pathway (Fig.4), 

which regulates a wide range of biological responses, including cell proliferation and 

differentiation, and tumorigenesis. Interestingly, the predicted targets of the three 

miRNAs include both positive (for example SMAD2/3) and negative (for example 

SMAD6/7) regulators of the pathway. The A549 non-small cell lung carcinoma cell line 

is highly sensitive to TGFB1 (TGF-β1) administration which triggers growth arrest along 

with cell scattering and invasion (Kasai et al. 2005). To test the activity of the selected 

miRNAs, we transiently transfected A549 cells with the synthetic RNA duplexes of the 
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mature forms of human miR-519d, miR-190 and miR-340; as a positive control, we used 

miR-93, a known inhibitor of TGFβ-induced cell-cycle arrest (Petrocca et al. 2008b). An 

unrelated Caenorhabditis elegans miRNA (cel-miR-67) was used as a reference, while 

miR-507 and miR-557, which were not associated with TGFβ signaling by COOL 

analysis, were used as negative controls. TGFB1 addition to cells transfected with cel-

miR-67, miR-507 and miR-557 resulted in the loss of intercellular adhesion and cell 

scattering, while transfection of miR-93, miR-519d and miR-190 resulted in complete 

inhibition of TGFB1-induced cell scattering. Strikingly, miR-340 did not inhibit these 

effects of TGFB1 but rather triggered cell scattering even in the absence of TGFB1 

stimulation. These data were confirmed by quantitative analysis of cell scattering, which 

showed that miR-93, miR-519d and miR-190 fully antagonized the effects of TGFB1, 

while miR-340 mimicked the actions of TGFB1 stimulation (Fig. 5). Analysis of cell 

proliferation revealed that all three of these tested miRNAs significantly affected cell 

growth. In particular, miR-519d and miR-190 significantly counteracted cell-growth 

inhibition mediated by TGFB1, similar to what was observed for the positive control 

miR-93. In contrast, miR-340 strongly inhibited cell proliferation to a level that could not 

be further decreased by additional TGFB1 treatment (Fig. 5). In summary, miR-519d, 

miR-190 and miR-340 were associated with the TGFβ pathway by COOL analysis, and 

indeed modulated two major biological responses elicited by TGFβ activation, i.e., cell 

scattering and cell-cycle arrest in lung tumor cells. 

 

Co-expression analysis identifies communities of miRNAs associated with common 

functions. 

Recent work by Tsang et al. (Tsang et al. 2010) showed that the members of a same 

family of miRNAs tend to target common transcripts due to similarities among their seed 

sequences. miRNA “co-targeting” helped to define the putative function of miRNA 

families by investigating the functional categories enriched among their targets. To 

further develop this topic, we defined the concept of ‘miRNA communities’ (miRCos) as 

groups of miRNA sharing a significant proportion of target genes as revealed by co-

expression analysis. To this aim, we measured the proportion of genes shared by all 

possible pairwise combinations of COOL clusters. This procedure resulted in the 
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identification of 87 miRNA communities (miRCo1-87; Fig. 6A). Most of these miRCos 

are composed of only a few members: eight communities include >10 miRNAs 

(Supplemental Fig. 3), with two of them (miRCo1, miRCo2) containing more than 20 

miRNAs. Remarkably, miR-519d and miR-93, which behaved similarly in our 

experimental analysis, mapped to the same community, miRCo16 (Fig. 6B). This 

community also includes miR-17, miR-20 and miR-106, which were previously 

described as being involved in the regulation of TGFβ signaling (Petrocca et al. 2008b). 

We inferred the biological functions associated with each miRCo by calculating 

their hypergeometric enrichment of GO and KEGG terms compared with the whole set of 

significant co-expression clusters (Supplemental Table 3). Emerging functional 

macrocategories included the same wide spectrum of biological functions as single 

miRNAs, and the relative proportions were also similar (Fig. 6C). Exceptions were 

categories associated to development and signaling, which were relatively more 

represented in miRCos (~70% and ~40% more frequent than in single miRNA analysis, 

respectively). This could be interpreted as a lower tendency of these categories to group 

into communities with shared targets, which copes with their regulatory role; i.e., 

differentiated by definition. Literature analysis confirmed the reliability of the functional 

categories associated with miRCos (Supplementary Table 4). miRNA communities are 

likely to be involved in the synergistic modulation of cohorts of genes that regulate 

similar processes, which adds a new layer of complexity to the regulatory functions of 

human miRNAs. 

In summary, our results demonstrate that co-expression meta-analysis performed 

by using widespread, non-miRNA-specific microarray platforms is a powerful tool to 

define miRNAs’ downstream gene networks, biological roles and functional 

communities. 

 

CoMeTa website 

To enable researchers to retrieve associations between miRNAs, genes and biological 

functions of interest, we have organized all of the information generated by CoMeTa into 

an interactive on-line database, which is publicly available at 

http://cometa.tigem.it/site/index.php. The website includes the CoMeTa co-rank lists and 
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additional targets for all of the human miRNAs, their associated pathways resulting from 

COOL analysis, and miRNA communities with their corresponding enriched functional 

categories. The CoMeTa website is searchable by miRNA, target gene, or biological 

function of interest, and represents a unique resource to gain insight into miRNA-

controlled gene networks and functions.  

 

Discussion 

It was previously suggested that different miRNAs might contribute to the regulation of 

the same functions by co-targeting similar sets of genes (Tsang et al. 2010; Ulitsky et al. 

2010; Sass et al. 2011; Su et al. 2011). Here we have introduced co-expression-based 

gene network analysis as a means for inferring genes and functions associated with the 

transcriptional control of specific miRNAs. Network analyses were performed by 

elaborating the information associated with hundreds of different cellular and tissue 

conditions, an ensemble that is capable of capturing an impressive number of 

relationships between gene regulatory dynamics. Previous computational methods for the 

identification of miRNA targets have solely relied on sequence analysis of miRNA-

mRNA target sites (Bartel 2009). More recently, a number of tools introduced the use of 

high-throughput expression analysis to improve predictions of miRNA targets (Huang et 

al. 2007; Ulitsky et al. 2010) and the identification of gene networks controlled by 

miRNAs (Friard et al. 2011; Huang et al. 2011; Jayaswal et al. 2011; Le Bechec et al. 

2011; Liu et al. 2011; Xu et al. 2011). All the above procedures are based on the 

comparison of paired datasets of miRNA and mRNA expression data generated from 

specific microarray platforms. CoMeTa is the first tool to integrate computational and 

expression analysis by relying exclusively on the extraordinary resource of mRNA 

transcriptome datasets available in public databases. Our tool does not require expression 

data from miRNA-specific probes and is effective in the recognition of miRNA targets, 

including those missed by sequence-based prediction tools (Fig. 1B and Supplementary 

Table 1). Recent observations reported that target mRNA abundance may dilute miRNA 

activity based on concentration/competition effects (Arvey et al. 2010), which could limit 

the inference of miRNA-target mRNA relationship based on the observation of 

expression variations. However, CoMeTa is based on the use of Pearson correlation 
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scores among variations in mRNA expression, which depend on relative and not absolute 

variations. Therefore, CoMeTa’s performance is unaffected by possible 

concentration/competition effects, as long as the effect of a miRNA on its target genes is 

measurable by microarray experiments. 

 Interestingly, while testing the CoMeTa procedure, we did not observe any 

significant differences in the behaviors of targets previously ascertained at the 

translational level (DS2) versus targets reportedly controlled at the transcript level (DS3). 

Since the CoMeTa procedure is based on the analysis of transcript levels, our results 

indicate that the effects of miRNAs on the expression levels of their mRNA targets is a 

widespread phenomenon that is not limited to a restricted subset of targets, thus 

strengthening the emerging view that miRNA-mediated regulation acts predominantly at 

the transcript level (Lim et al. 2005; Guo et al. 2010). 

The central hypothesis of our study was that genes targeted by the same miRNA 

are co-expressed with each other under multiple conditions. We demonstrated this 

hypothesis by showing that miRNAs identify clusters of co-expressed genes, which were 

subsequently used to infer miRNA functions. We assigned specific biological roles to 

more than 500 human miRNAs that identified significant co-expression clusters. The 

high overlap with miRNA functions supported by published experiments (135 cases, see 

Supplementary Table 2) demonstrates that our procedure is both reliable and general and 

endorses the predictions associated with miRNAs for which a biological role has not 

experimentally been established yet. However, one cannot exclude that in some instances 

a significant degree of co-expression between miRNA predicted targets may reflect the 

presence of alternative sources of transcriptional controls, such as transcription factors. 

Therefore, to further demonstrate the causal relationship between gene co-expression 

clusters and miRNA functions we decided to experimentally investigate three miRNAs 

(miR-519d/miR-190/miR-340), which our procedure associated with modulation of the 

TGFβ pathway. We indeed showed that miR-519d and miR-190 inhibit, whereas miR-

340 mimics, the effects of TGFB1 on cell proliferation, morphology and scattering. 

Interestingly, miR-519d is part of a miRNA community with several miRNAs (miR-

17/20a/106b/93) known to be involved in TGFβ regulation (Petrocca et al. 2008a) (Fig. 

6B), which supports the concept that these communities underlie a common regulatory 
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function. While no information is available on the role of miR-190 in cell proliferation 

and tumorigenesis, a recent study showed that miR-340 has tumor-suppressive roles in 

the aggressive variants of breast cancer, in which miR-340 expression inversely 

correlates with tumor progression and metastasis (Wu et al. 2011). In summary, we have 

characterized miR-519d, miR-190 and miR-340 as novel regulators of the TGFβ 

pathway, thus providing potential therapeutic targets for the treatment of invasive tumors. 

The analysis of other miRNA communities illustrated the multiplicity of functions 

associated with synergic miRNA control. We identified 87 such communities based on 

the overlap among miRNA gene networks: analysis of the available literature showed an 

impressive concordance with the functions associated by cluster enrichment analysis 

(Supplementary Table 4). This analysis revealed that all of the miRNAs examined (with 

only one exception) are associated in communities with other miRNAs, indicating that 

the sharing of downstream regulatory networks is a general tendency of human miRNAs. 

Our analysis also established connections between different miRNA communities, which 

resulted in a general assessment of the network of interactions of the entire human 

miRNome.  

As previously stated, CoMeTa relies on the analysis of a vast dataset of publicly 

available transcriptome data generated from hundreds of different cellular and tissue 

conditions, which ensures an appropriate coverage of the diverse biological roles 

controlled by miRNAs. This particular aspect further distinguishes CoMeTa from a 

number of previous efforts, which utilized gene expression analysis to infer putative 

miRNA functions as the latter focused on the evaluation of more restricted, and often 

tissue-specific, expression datasets (Ulitsky et al. 2010; Jayaswal et al. 2011; Liu et al. 

2011; Su et al. 2011). While, on one hand, ensuring the identification of a broader variety 

of miRNA-controlled biological functions, the use of such a massive expression dataset 

could lead, on the other hand, to a slightly less efficient performance of CoMeTa in 

dissecting miRNA-controlled pathways that are specific for human tissues (e.g., the 

retina) that are, as yet, poorly represented in the expression dataset used to seed the 

procedure. In those instances, it will be necessary to generate a more comprehensive 

starting dataset of transcriptome data. However, it is expected that, thanks to the expected 

increase of high-resolution transcriptome data facilitated by the advances and cost 
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reduction of next-generation sequencing approaches (Ozsolak and Milos 2011), the 

current gap in adequate transcriptome coverage of some human tissues will be filled and 

therefore this possible caveat for the efficacy of the CoMeTa procedure will soon be 

overcome. 

In summary, we have used gene network analyses to assign hundreds of functions 

to human miRNAs, of which only a small fraction had been previously reported. Our data 

indicate that miRNAs control an important portion of cellular metabolism and accurately 

describe known and novel functions of specific miRNAs and miRNA communities. The 

resulting biological hypotheses and novel functional associations, along with the 

development of an innovative research paradigm, represent valuable resources for future 

investigations aimed at dissecting out miRNA functions. 

 

Methods 

The CoMeTa procedure 

The full set of human miRNAs was retrieved from miRBase (release 13.0) (Griffiths-

Jones et al. 2008). For co-expression data analysis, 250 microarray datasets were 

downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/), based on the Affymetrix 

HG-U133A GeneChip array (GPL96, Feb 19, 2002). Each dataset was pre-processed and 

normalized independently, and the data matrices with less than three arrays or more than 

200 missing values were removed. This resulted in a final list of 217 datasets. For each 

human miRNA, we collected the full list of predicted targets from miRanda (Betel et al. 

2008) (September 2008 release), and the targets conserved in mammals from TargetScan 

(Friedman et al. 2009) (release 5.1; April 2009) and PicTar (Krek et al. 2005) (March 

2007 release). All targets were pooled together in a single list of predicted targets. To 

evaluate co-expression, we first associated each gene with a “co-expression” list 

consisting of all other genes of the Affymetrix platform, ranked by their Pearson 

correlation score relative to the expression behavior in each single experiment. Then, for 

each gene of the list we generated a co-expression score that was set equal to its number 

of occurrences in the top 3rd percentile of each ranked lists, across all expression datasets 

analyzed (Gennarino et al. 2009; Sardiello et al. 2009; Palmieri et al. 2011). Thus, each 

pair of genes had a unique co-expression score as a result of this procedure. 
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Subsequently, to generate the co-rank list associated to each single miRNA, we collected 

the co-expression lists of all pooled putative targets, averaged the co-expression scores of 

all ranked genes, and extracted only the data associated with the specific putative targets. 

 

Additional miRNA target genes 

Human 3’UTR sequences were retrieved from the Primate UTRef collection of the 

UTRdb (Grillo et al. 2010). The 3UTRef.Pri.dat flatfile database downloaded from 

http://utrdb.ba.itb.cnr.it contains 3’UTRs from the RefSeq database 

(http://www.ncbi.nlm.nih.gov/RefSeq/) To associate each human 3’UTR to its 

corresponding probe on the HG-U133A GeneChip, we used the Affymetrix annotation 

file HG-U133A.na30.annot.csv.zip, downloaded from the Affymetrix website 

(http://www.affymetrix.com). Collected human 3’UTRs were searched for canonical, 7-

8-nt seed-matched sites (Bartel 2009). Custom Perl scripts were used to perform the 

analyses, making extensive use of the Bioperl toolkit.  

 

COOL analysis 

For each miRNA, the collected predicted targets were used to generate a co-expression 

matrix according to the co-expression scores obtained with the CoMeTa procedure. This 

matrix was then processed with MultiExperiment Viewer, to obtain the hierarchical 

clustering (Saeed et al. 2006). The first node was selected to obtain two clusters of 

predicted targets, for which two respective co-rank lists were calculated. We reasoned 

that co-expressed genes would generate a co-rank list with non-random enrichment of co-

expressed entities in the top positions, and that their associated values would deviate from 

normality because of this enrichment. To test this hypothesis, we compared the 

distributions of co-expression values from each cluster with a randomly generated gene 

lists of the same size, using Quartile-Quartile (Q-Q) plot analysis (Chambers et al. 1983), 

against a hypothetical standardized normal distribution. To evaluate the deviation from 

the normality hypothesis, a normal probability plot was drawn for each COOL cluster 

(see Supplementary Figure 2) and regression analysis was performed. The corresponding 

R2 value was used as the index for measuring the deviation of the co-rank list from 

normality: the lower the R2 value, the greater the deviation from normality. Using this 
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procedure, we observed that the distribution of co-expression values associated with 

random lists were close to normality, with R2 values ranging from 0.91 to 0.98. However, 

R2 values associated with COOL clusters were distributed in a biphasic fashion, typically 

with only one of the two clusters for each miRNA associated with an R2 value lower than 

0.91 (and therefore far from randomness). We only considered clusters with R2 ≤0.91 for 

the subsequent analyses. Overall, for the COOL analysis, we started from a total number 

of 410 million possible pairs of miRNA target gene co-expression interactions. Following 

all of the above described filtering steps, only 30% of these interactions were left for 

further analysis. 

 

Gene-set enrichment analysis  

Gene-set enrichment analysis was performed as previously described (Gennarino et al. 

2011). The cumulative distribution function was constructed by performing 1,000 random 

gene-set membership assignments. A nominal P value <0.01 and a false discovery rate 

(FDR) <0.25 were used to assess the significance of the enrichment scores. The 

microarray expression data used in this study have GEO accession numbers GSE12091 

and GSE12092 (Gennarino et al. 2009). 

 

miRCos procedure 

To identify the communities of miRNAs, we used the Affinity Propagation clustering 

algorithm, APcluster, (Frey and Dueck 2007) which groups items into communities of 

items. APcluster consider a similarity (or distance) between the items and iteratively 

groups them via a message passing paradigm, minimizing a scoring function until 

convergence is reached. APcluster does not require the number of communities to be 

specified by the user, which is the main advantage compared to other clustering 

algorithms. The algorithm generated a list of 87 communities and automatically assigned 

an ‘exemplar’ node to each community. The network of miRNAs was displayed using 

Cytoscape (Shannon et al. 2003). In the graphical representation, only the interactions 

among miRNAs from the same community were kept. 
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Gene Ontology (GO) analysis 

GO analysis was performed using the ‘database for annotation, visualization and 

integrated discover’ (DAVID) web tool and default parameters 

(http://david.abcc.ncifcrf.gov/). We used Biological Process FAT (BP_FAT) and KEGG 

pathway analysis to infer enriched terms. Only BP_FAT categories with FDR ≤5 and 

KEGG pathways with FDR ≤20 were retained. For miRCos, enrichments were calculated 

by considering significant clusters from COOL analysis as the background. 

 

Cell transfection assay 

Non-small cell lung cancer A549 cells were cultured in Dulbecco’s modified Eagle’s 

medium supplemented with 10% fetal bovine serum, penicillin (100 U/ml) and 

streptomycin (100 ng/ml) at 37 °C in an atmosphere of 5% CO2. SiRNA transfection of 

these A549 cells was performed using InterferinTM (Polyplus transfectionTM), according 

to the manufacturer protocol. The cells were transfected with miRIDIANTM Dharmacon 

microRNA Mimics, at a final concentration of 20 nM.  

 

Cell proliferation assays 

Transfected cells were seeded in triplicate in opaque-walled 96-well plates (Corning, 

USA). The medium was changed the following day, and supplemented with 5 ng/ml of 

TGF-β1 (TGFB1) (Sigma-Aldrich, USA) where indicated. Viable cells were counted 

using the CellTiter-Glo® Luminescent Cell Viability Assay (Promega Corporation, 

USA).  

 

Immunofluorescence and cell scattering analysis 

Cells were transfected with miRNA Mimics and seeded on coverslips in 24-well plates 

(Corning, USA). After 24 h, the medium was changed and supplemented with 5 ng/ml 

TGF-β1 (TGFB1) where required. After 72 h, the cells were fixed with 4% 

paraformaldehyde and stained with FITC-phalloidin (Sigma-Aldrich) and DAPI. Imaging 

was performed using a 10× objective on a Zeiss LSM710 confocal microscope. Local cell 

density was evaluated as the number of cell nuclei within a square area (10,000 px2 ≅ 
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18,000 µm2) centered on each cell nucleus detected in pictures using CellProfiler 2.0 

software. An average of ~1,000 cells was analyzed for each condition. 
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Figure Legends 

Figure 1. The CoMeTa procedure. (A) For simplicity, the strategy is described on a 

subgroup of 10 genes. Multiple transcriptional controls (arrows) for these genes are 

shown, including a specific miRNA (miRNA-X, blue arrows). In the example, Gene 8 

(yellow box) and Gene 9 (red box) are respectively a false positive and a false negative 

result of sequence-based software predictions, used to seed the analysis. In co-expression 

lists, the ranking of the genes is an index of their expression correlations with the probe 

gene. A co-rank list is obtained by averaging the co-expression lists. The false-positive 

target ranks low in the co-rank list, whereas the false-negative target ranks high and can 

be identified by subsequent de-novo sequence analyses (additional targets [AT] list). The 

CoMeTa output consists of the list of predicted targets ranked by expression analysis. Co-

expression lists are subsequently used for further analysis (see text). (B) Distribution of 

known miRNA targets (horizontal lines in the upper panel) within CoMeTa lists, for three 

independent datasets of miRNA targets (DS1, DS2, DS3). Counts within the first 30th and 

50th percentiles are provided for each dataset in the lower table. The average number of 

targets for each miRNA present in the first 50th percentile of CoMeTa lists is 750 (DS1), 

850 (DS2) and 900 (DS3). P-values: <10-39 (DS1), <10-29 (DS2) and <10-23 (DS3).  

 

Figure 2. COOL analysis of miRNA-predicted target transcriptional networks. (A) 

Kernel density estimation of R2 values for the normal probability plot analysis of miRNA 
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clusters (red line) and size-matched random clusters (blue line). An R2 value of 0.912 

represents the lowest value for the random clusters, and this was used as the threshold 

(green dotted line) to select the significant miRNA clusters. Black bars, R2 values of 

DS1-associated clusters. (B,C) COOL heat-maps (left) and their enrichment plots 

generated by gene-set enrichment analysis (right) for the dataset of probes differentially 

expressed after miR-26b transfection (B) and miR-98 transfection (C). Green lines in the 

plots, enrichment scores; vertical black bars below the plots, positions of the probes from 

the analyzed COOL clusters according to the ranking of their expression levels, i.e., from 

the most down-regulated (left) to the most up-regulated. ES, enrichment score. FDR, 

false discovery rate. (D) Frequency distribution of functions assigned to COOL clusters 

as grouped in macrocategories. The number of miRNAs associated with each 

macrocategory is shown in parenthesis. 

 

Figure 3. Overview of COOL clusters with known and predicted functions. Analyses of 

miR-155 (A), miR-1 (B), miR-130a (C), miR-519d (D), miR-190 (E) and miR-340 (F). 

The graphs represent the COOL heat-maps of putative targets generated according to 

their reciprocal expression relationships. Red and yellow boxes, clusters with an R2 value 

higher or lower than the set threshold, respectively. PTs, predicted targets. Some of the 

functional categories enriched in the significant miRNA clusters are indicated. 

 

Figure 4. miR-519d, miR-190 and miR-340 in the TGFβ signaling pathway. Schematic 

of the network of interactions between genes and proteins involved in TGFβ signaling. 

Putative targets of miR-519d (purple), miR-190 (orange) and miR-340 (yellow) are 

indicated. Double vertical lines, the cell membrane. Dotted vertical line, the nuclear 

membrane. Dotted horizontal lines, links to other cellular pathways. 

 

Figure 5. miR-519d, miR-190 and miR-340 modulate TGFβ signaling. Analysis of cell 

proliferation, cell morphology and cell scattering following miRNA transfection in A549 

cells, with or without TGFB1 addition. All data and confocal microscope images are 

representative of at least three experiments for each miRNA. Cell proliferation is 

expressed in relative luminescence units (RLU), determined by luminescence-based cell 
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viability assays. Confocal microscopy was performed after staining with FITC-phalloidin 

(green) and DAPI (blue). Cell scattering was quantified by digital image analysis of local 

cell density. 

 

Figure 6. miRNA community networks. (A) Graphical representation of the community 

organization of human miRNA downstream transcriptional networks. miRNAs are 

represented as grey circles. miRNAs that belong to the same community are linked with 

edges of the same color. For each community an exemplar (centre of the miRNA 

community) was chosen and is indicated with a blue triangle. miRNAs that link together 

different communities are indicated with a red triangle. (B) Enlarged section from panel 

(A), showing the composition of miRCo16 and the mutual relationships of its miRNAs 

and shared target genes. (C) Frequency distribution of functions assigned to miRCOs as 

grouped in macrocategories. The number of miRCOs associated with each macrocategory 

is shown in parenthesis. 
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