
Joint analysis of miRNA andmRNA
expression data
Ander Muniategui, Jon Pey, Francisco Planes and Angel Rubio
Submitted: 21st February 2012; Received (in revised form): 6th May 2012

Abstract
miRNAs are small RNA molecules (022nt) that interact with their target mRNAs inhibiting translation or/and clea-
vaging the target mRNA. This interaction is guided by sequence complentarity and results in the reduction of
mRNA and/or protein levels. miRNAs are involved in key biological processes and different diseases.Therefore, de-
ciphering miRNA targets is crucial for diagnostics and therapeutics. However, miRNA regulatory mechanisms are
complex and there is still no high-throughput and low-cost miRNA target screening technique. In recent years, sev-
eral computational methods based on sequence complementarity of the miRNA and the mRNAs have been de-
veloped. However, the predicted interactions using these computational methods are inconsistent and the
expected false positive rates are still large. Recently, it has been proposed to use the expression values of miRNAs
and mRNAs (and/or proteins) to refine the results of sequence-based putative targets for a particular experiment.
These methods have shown to be effective identifying the most prominent interactions from the databases of puta-
tive targets. Here, we review these methods that combine both expression and sequence-based putative targets
to predict miRNA targets.
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INTRODUCTION
miRNAs are small RNA molecules (022 nt) that have

been shown to be one of the key regulators of the

expression of their mRNA targets in many meta-

zoans and plants. Currently, the number of

miRNA sequences annotated in miRBase—de facto
database for miRNAs—is over 17 000 in 140 species,

including 1400 human miRNA sequences (release

17, miRBase) [1]. microRNAs are processed from

double-stranded hairpin precursors by Drosha pro-

tein in the nucleus and by Dicer protein in the cyto-

plasm [2, 3]. The final single-stranded mature

microRNA hybridizes with the RNA-induced silen-

cing complex (RISC) to undergo gene inhibition.

Although there are exceptions of miRNAs that

show up-regulation effects on mRNA expression

[4], the general statement is that miRNAs act to re-

press the expression of their targets [5–7]. Gene

regulation by RISC complex is guided by sequence

complementarity between the ‘seed region’ (nucleo-

tides 2–7 and 8) of the microRNA and the 30-UTR

of the mRNA [8]. In plants, perfect base pairing of

miRNA and mRNA leads to mRNA degradation

and the subsequent reduction of both mRNA and
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protein levels. On the contrary, in animals, base pair-

ing is not perfect and miRNAs act to degrade and/or

translationally inhibit the mRNA. Although deter-

mining the predominant mechanism of miRNA

regulation has undergone extensive debate [9, 10],

it has been recently shown that animal miRNAs

mainly act to degrade mRNA targets [11]. miRNA

regulation is only one of the many regulatory mech-

anisms of mRNA expression. Other mechanisms

such as alternative splicing, polyadenylation and

regulation of transcription [12] do also take place.

miRNAs are generally assumed to be fine-tuners of

protein expression.

Each miRNA is potentially able to regulate

around 100 or more mRNA targets and 30% of all

human genes are supposed to be regulated by

miRNAs [6, 13]. miRNAs are involved in key bio-

logical processes, such as development, differenti-

ation, apoptosis and proliferation [14, 15].

Furthermore, alterations in their regulatory pathways

can cause different diseases such as cancer, neurode-

generative (Alzheimer, schizophrenia), cardiovascular

diseases and metabolic disorders [16–20]. Therefore,

identification and validation of miRNA–mRNA tar-

gets is essential since unveiling their regulation net-

work may lead to new therapeutic targets [19, 21,

22]. Unfortunately, the validation of putative

miRNA–mRNA interactions is not straightforward

(see Figure 1a–d brief summaries of the respective

following paragraphs are showed).

Experimental methods
The most extended experimental technique for

determining miRNA targets (Figure 1a) is the trans-

fection of mimic miRNAs or miRNA inhibitors (i.e.

anti-miRs [23], antagomiRs [24] and miRNA

sponges [25]). The effects on the expression levels

of the mRNAs and proteins are measured by using

transcriptomic and proteomic tools (i.e. qRT-PCR,

microarrays, RNA-seq, western blot, SILAC,

2D-DIGE). However, with this technique it is not

possible to distinguish indirect and direct inter-

actions. Adding reporters or labels to miRNAs or

the 30-UTR of transcripts of interest during transfec-

tion focus the experiment on direct interactions as

done in LAMP or luciferase report assays. Other

direct methods for miRNA target prediction are

based on the immunoprecipitation of RISC com-

plexes such us Argonaute bound miRNA–mRNA

molecules (i.e. HITS-CLIP [26] and PAR-CLIP

[27]). There are other alternative experimental

techniques, such as the detection of the 50-UTR of

the degraded mRNAs with 50 RLM RACE, the

detection of mRNAs undergoing translation by

using polysome profiling or the detection of

mRNAs by biotin labeled miRNAs. Each experi-

mental technique has its own reliability (i.e. direct

measurement of miRNA binding sites by

HITS-CLIPS and PAR-CLIP makes the results

more reliable than an indirect measurement from

the analysis of expression patterns). Due to this, com-

bining different experimental tools is a good method

to ensure the authenticity of a miRNA target [28].

For a review of experimental methods for miRNA

target prediction, see Refs [29–32]. The outputs of

these experiments are a set of experimentally vali-

dated interactions (see Figure 1c, further explained

in a following section).

Sequence-based methods
Despite the wide range of experimental tools for

miRNA target validation available, the lack of

high-throughput and low-cost methods has enforced

the development of computational techniques

(Figure 1b). These are based on experimentally

determined rules of miRNA targeting: (i) sequence

complementarity between the 30-UTR of the

mRNAs and the ‘seed region’ of the miRNA (nu-

cleotides 2–7), (ii) possible functional target sites

along the coding sequence and 50-UTR of the

mRNA, (iii) conservation of some of the miRNA

target sites between related species and (iv) the target

site accessibility due to the RNA secondary structure

(i.e. free energy costs to unfold the mRNA second-

ary structure surrounding the target site and free

energy of the miRNA-target pairing) [33–35].

Although the methods that use these rules are far

from perfect, the putative lists of targets generated

by computational methods entangle a considerable

reduction of experimental work as they significantly

reduce the number of interactions that must undergo

validation.

Databases of interactions
The lists of miRNA targets predicted by experimen-

tal and computational tools have been included in

several databases (Figure 1c). The most cited com-

putationally-based databases are miRanda [36],

miRBase [37], TargetScan [38–40], DIANAmicroT

[41] and PicTar [42]. Computational methods pre-

dict hundreds of thousands target mRNAs per

miRNA [43]. According to several studies, the
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estimated false positive rate of these predictions

ranges from 24% to 70% [44, 45]. A consequence

of this is the lack of concordance between the pre-

dictions of different databases (as shown in Figure 1).

A comparison of these databases and different com-

binations of them can be found in Ref. [44]. On the

other hand, the most important databases that in-

clude experimentally validated targets are TarBase

[46], miRecords [47], miRtarbase [48], miRWalk

[49] and miRNAMAP [50]. Among these, TarBase

and miRecords include manually curated experi-

mental interactions, while miRWalk and

miRNAMAP use text mining tools. miRtarbase

database uses text mining techniques and manual

curation and it includes most of the interactions on

TarBase and MiRecords. In TaRBase, miRecords

and miRtarbase databases the experimental tech-

niques used for the validation of each miRNA

target is also included. As mentioned before, each

experimental technique has its reliability and thus,

the addition of this information gives a confidence

level to each interaction. Compared to the hundreds

of thousands of putative targets predicted by se-

quence-based algorithms, the number of experimen-

tally validated targets is very low. For instance,

TarBase includes 1300 experimentally validated tar-

gets in humans.

Combination of experimental data and
sequence-based predictions
The reliable prediction of miRNA targets is still a

challenge. One appealing possibility to accomplish

Figure 1: Combining experimental and computational tools for deciphering miRNA functions and targets. Several
computational and experimental tools for the identification and validation of miRNA targets have emerged in the
last years. Although the wide range of experimental tools for miRNA target validation available (a), the lack of
high-throughput and low-cost methods enforces the use of computational techniques (b).These are based in experi-
mentally determined rules of miRNA targeting. Putative lists of targets generated by computational methods entan-
gle a considerable reduction of work since the number of experiments to carry out is greatly diminished (c).
Further reduction of the number of putative miRNA targets is achieved combining experimental data and
sequence-based predictions (d).
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this task is to combine high-throughput experimen-

tal data together with sequence-based putative pre-

dictions to improve the reliability of the predictions

in a particular experiment [51–59] (Figure 1d). In

this review, we focus on computational methods

that combine sequence-based interactions and

miRNA and mRNA expression data so as to filter

putative lists of miRNA targets.

TARGET PREDICTION BASEDON
EXPRESSION DATA AND
SEQUENCE-BASED PUTATIVE
INTERACTIONS
Computational models able to predict the most out-

standing miRNA–mRNA interactions combine in-

formation from three different sources as depicted in

Figure 2: mRNA (or protein) expression, miRNA

expression and putative interactions. The mathemat-

ical tools used by these models move from simple

Correlation analysis to more complex Bayesian

inference methods (Table 1). Most of these models

assume that mRNAs are repressed by miRNAs.

Nevertheless, there are some studies, based on cor-

relation analysis, that also consider possible enhance-

ment effects from miRNAs.

Henceforth, matrices XJxT¼ [xjt] and ZKxT¼ [zkt]

denote the expression values of mRNAs j (j¼ 1, . . . ,

J) and miRNAs k (k¼ 1, . . . , K) in sample t
(t¼ 1, . . . , T), respectively. The set of putative tar-

gets is represented by a binary matrix CJxK¼ [cjk],

where cjk is 1 if the pair mRNA j–miRNA k has

been putatively predicted from a sequence-based

method, 0 otherwise. For the sake of simplicity,

we also denote the expression across samples as the

row vectors xj¼ [xj1, . . . , xjT] and zk¼ [zk1, . . . ,

zkT]. Observe that mRNA and miRNA expression

data as assumed to be sample matched. The output of

any method described here is a scored version of the

matrix C of putative targets (C0 in Figure 2).

Table 1 summarizes methods based on X, Z and

C matrices previously introduced. We describe

below each of these methods in detail. In this

review, we have not studied the methods that

using X and C predict Z, the activity of miRNAs.

Most of them use enrichment analysis methods bor-

rowed from GO enrichment analysis (i.e. Genecodis

[60, 61], GSEA [62, 63], MMIA [64], etc.).

Correlation and mutual information
A straightforward method to analyze the relationship

between miRNAs and mRNAs is the Pearson cor-

relation. It is a measure of linear-dependency and is

mathematically represented as a scalar product, as

shown in Equation (1). The notation mxj ¼ 0 and

sx
j ¼ 1 indicates that the expression data for

mRNA j is standardized. Similarly, mzj ¼ 0 and

sz
j ¼ 1 indicates that expression of miRNA k is

standardized.

rjk ¼ xj
� �T

mj¼0jsj¼1
� zkð Þmk¼0jsk¼1¼

xj � mxj
sx
j

 !T

�
zk � mzk

sz
k

� �
:

ð1Þ

Due to its simplicity and intuitive interpretation,

Pearson correlation is widely used [65–67]. Only

those putative miRNA–mRNA pairs that show a

statistically significant correlation values are

Figure 2: Scheme representing how sequence-based putative targets are scored by using mRNA and miRNA ex-
pression data.Matrices X, Z and C represent mRNA andmiRNA expression data and putative interaction matrices,
respectively. C is a binary matrix, which takes 1 is the corresponding pair is included in the considered database
and 0 otherwise. A stringent set of targets can be used by combining C matrices of different databases. The
output is C0, a matrix that ranks the putative interactions using the information from X and Z.
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Table 1: Different methods in the literature to filter sequence-based interactions by using expression data

Method References Description Input data Result

Correlation
Pearson correlation [47,48,55] The correlation coeficient is calculated for

each of the miRNA-mRNA pairs.Only
putative relationships are further
considered.

X Z C <0 ojk¼ (xj� mj)�(zk ^mk)
T/(sj�sk)

Spearman correlation [48] Non-parametric measure of correlation. It
is computed from the ranks of the values.

X Z C <0

Mutual information [48] A generalized measure of dependency that
extends Correlation from linear depen-
dencies to any type of functional rela-
tionship. It cannot distinguish between
positive and negative regulations.

X Z C

Linear regression
MLR [56] A multiple linear regression model.Only

valid in case the number of putative
miRNA regulators of a mRNA is lower
than that of samples.

X Z oj¼xj�Z
T
�(Z�ZT)�1

MLRþ R2 method [57] The model solves a multiple linear regres-
sion between each mRNA and its miRNA
regulators and assigns a confidence value
by using R2 statistics.

X Z C

Partial LS [58] Alternative method to linear regression
used if the number of predictors is larger
than the observations or in case of col-
linearity of the data. Results of combining
X and Z are validated with C.Therefore
C is used only for validation.

X Z

Regularized LS
Lasso regression (TaLasso) [59,60] Least Squares with norm-1 regularization.

Provides a sparse solution, i.e. a relatively
small set of outstanding interactions.

X Z C <0 oj¼xj�Z
T
�(Z�ZT

þ n�I)�1

Ridge regressiona Least Squares with norm-2 regularization.
It has an explicit solution.

X Z C

Elastic net [51] It uses both norm-1 and norm-2 regulariza-
tions. It can be reduced to Lasso and
Ridge regressions by making the regular-
ization parameters of norm-2 or norm-1
equal to zero.

X Z C

Bayesian inference [46] (i) GenMiRþþ is based on the expected in-
verse relationship among the expressions
of the miRNAs and their targets.

X Z C <0

[61] (ii) GenMiR3 is a newer release of
GenMiRþþ that accounts for
sequence-based information.

X Z C Rb <0

[50] (iii) a Bayesian Inference model with miRNA
and protein expression levels.

X Z P <0

[62] (iv) HCtarget is a variation of GenMiRþþ
with modified priors over some of the
parameters.

X Z C <0

[63] (v) A Bayesian Graphical method. Here au-
thors restrict miRNA interaction search
to down-regulation effects, allows adding
weights (representing the confidence) to
the sequence based putative predictions
and forces the sparsity of the solution.

X Z C R <0

Matrices X, Z, P and C represent expressionmatrices ofmRNA, miRNA andproteins and thematrix of putativemiRNA^mRNA interactions, re-
spectively. The <0 indicates that the model includes a restriction so that only down-regulation effects from miRNAs are considered.This can be
done: (i) by selecting the negative results or (ii) by imposing to themodel to search only negative regressors (i.e. adding non-positive constraints).
aTo our knowledge, there is no computationalmethod that uses Ridge regression formiRNA target prediction.However, as shown in the next sec-
tion, Ridge regression and GenMiRþþ are strongly related and thus we have included this method in the table. bGenMiR3 does not account for
the scores of the sequence-based putative interactions. Alternatively, it considers other sequence-based information: total hybridization energy,
context score and PhastCons score [61].R¼ reliability of putative targets: scores from sequence-based databases or sequence features.
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considered for further experimental validation.

However, the number of significant miRNA–

mRNA pairs can be too high to undergo posterior

experimental validation. For this reason, approaches

using correlation analysis usually include other con-

straints: differential expression [58, 68], sequence-

based complementarity (i.e. putative targets)

[53, 67, 69] and other biological information (i.e.

conservation of target sites) [67]. Note here that

these methods typically consider only negative cor-

relation values. However, studies do exist consider-

ing positive correlations since some miRNAs may

act as transcription factors [67, 70, 71].

There are several web-based tools and databases

that use correlation for miRNA–mRNA target re-

search [52, 53, 72, 73]. One outstanding example of

these methods is HOCTAR [52]. HOCTAR was

developed to determine mRNA targets of intragenic

miRNAs [52, 74]. The expression values of host

genes and intragenic miRNAs are strongly related,

thus, the expression of host genes can be used to

estimate the expression of intragenic miRNAs.

Since the number of samples with available mRNA

expression is large (this study includes 3445 arrays),

the correlation can be highly significant even for

small values.

In some situations, particularly when the under-

lying relationship is not linear or in the presence of

outliers, Spearman correlation outperforms the

Pearson correlation. Several web tools provide it as

an alternative to correlation [53].

A different measure of independence of variables is

mutual information (MI). While correlation values

can distinguish the sign of the miRNA–mRNA re-

lationship, MI only indicates whether (or not) two

given variables are independent. These three meas-

ures (Pearson, Spearman and MI) were integrated in

the web-based tool called MAGIA [53].

Multiple linear regression
Multiple linear regression (MLR) evaluates the rela-

tionship between the complete set of miRNA regu-

lators and a target mRNA at the same time, in

contrast to correlation techniques, which focuses

on particular interactions. Some authors have used

MLR for miRNA target prediction: by only con-

sidering expression data [75] and by combining both

expression and sequence-based data [76]. In Ref.

[76], the R-squared statistics is used for measuring

the goodness of fit of the data.

An ordinary MLR model for mRNA j and its K
miRNA putative regulators can be formulated as

follows:

xj ¼
XKj

k¼0

ojk � zk þ "j ¼ oj � Zj þ "j ð2Þ

where uj¼ {ojk}¼ [oj0, oj1, . . . , ojK] is the vector

of regulatory weights and "j is an error term. For

simplicity of notation, here and in the following,

Kj will represent the number of putative miRNA

regulators of mRNA j (those with cjk¼ 1). In the

matricial form, Z is a matrix of size (Kj
þ 1)�T of

miRNA expression, in where, z0¼ [1, 1, . . . , 1]T has

been added to Z to account for the intercept, oj0.

The explicit solution of a MLR after applying least

squares is given by:

oj ¼ xj � Zj� �T
� Zj� �T

� Zj� �h i�1

ð3Þ

If data is highly correlated—collinearity—or the

number of samples is smaller than that of miRNA

regulators, the matrix (Zj)T�Zj can be singular and

provokes instabilities in the solution. Since the

number of putative miRNA regulators of an

mRNA is usually larger than that of samples, plain

MLR cannot be applied as a general purpose method

to find miRNA–mRNA relationships and other al-

ternatives must be considered.

Partial least squares
If the number of samples with available expression

data is smaller than the number of covariates

(miRNAs) the linear model is undetermined, the

computed solution is not unique and therefore

plain MLR cannot be applied. An extension of

MLR suited for these cases and for possible collinear

covariates are the partial least squares (PLS). A PLS

model extracts the main miRNAs that explain the

maximum variance in the mRNA expression by

ensuring a good fit of the underlying model. This

method is applied for miRNA target prediction in

Ref. [77]. There, the authors determine putative

miRNA–mRNA interactions by only considering

expression data from both miRNAs and mRNAs.

In their method, they reduce the number of possible

miRNA–mRNA pairs by selecting differentially ex-

pressed miRNAs and mRNAs, do bootstrap for stat-

istical analysis of the results and determine the

validity of the method by comparing their predicted

interactions with those included in sequence-based

databases (TargetScan and miRanda). Although
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putative interactions are difficult to integrate with

standard PLS, there are some adaptations that can

include this information and use the information in

sequence-based databases.

Regularized least squares
An alternative method to deal with undetermined

linear systems is regularization. In regularized least

squares, aside from minimizing the error, there is

an extra term that forces the coefficients of the so-

lution to be somehow small. This approach can be

formulated as the optimization problem,

min
��xj � oj � Zj

��2

2
þn � RðojÞ

n o
, ð4Þ

where R(uj) indicates the regularization of uj and n
is a tuning parameter that controls the degree of the

regularization. The most common regularizations are

the norm-1 (jujj1, LASSO regression), the norm-2

[jujj2, Ridge regression (RR)] and a combination of

both (n1�jujj1þ n2�jujj2, elastic-net). Norm-1 regu-

larization fosters the number of non-zero covariates

mRNA–miRNAs interactions to be small. On the

other hand, norm-2 provides a solution in which all

the coefficients are small but not null. Norm-1 and

elastic-net regularizations have been used for

miRNA target predictions in Refs [78] and [56],

respectively. Since miRNA usually down-regulates

the target mRNA, it is sensible to add the restriction

of negative relationships to the optimization shown

in Equation (4). In Ref. [79], we showed that adding

non-positivity constraints to LASSO regression pro-

vides more experimentally validated interactions and

better biological interpretation.

Bayesian inference
Bayesian inference refers to statistical models that use

a priori information to estimate parameters and pre-

dict values in a probability framework. We found

four methods based on Bayesian techniques for

miRNA target prediction [51, 55, 80, 81]. Three

of them use mRNA and miRNA expression data

[51, 80, 81] while the other uses miRNA and pro-

tein expression values [55]. In this review, we will

focus on the first three. A schematic representation of

the first three methods is shown in Figure 3.

Figure 3: Bayesian inference methods for scoring putative miRNA^mRNA targets based on miRNA and mRNA
expression data: relationships between them. Bayesian inference methods use a priori information to estimate par-
ameters in a probability framework. The models of the figure assume normal distribution over xj with a mean
value dependent on the regressors and miRNA expression. The models divide the regulatory effect into different
factors: (i) in GenMiRþþ the regressors are divided onto the tissue scaling of miRNA expression, the degree of
regulation form miRNAs and the probability of a putative target of being real or not; (ii) HCtarget groups the
tissue effect and the degree of regulation of GenMiRþþ and accounts for the same indicator variable as
GenMiRþþ and (iii) the Bayesian graphical method only accounts for the degree of regulation from miRNA, that
depend on the indicator variables for putative targets (i.e. the model uses a mixed prior for the regressors). Each
of the models assumes a different prior probability over p (orange arrows), the probability of a putative target of
being real. The dashed lines on HCtarget indicate that the model is not feasible when the number of regressors is
much larger than that of samples.V1 and V2 refer to version 1 and version 2, respectively.
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GenMiRþþ was the first developed method for

miRNA–mRNA target prediction based on expres-

sion data [51]. In the model, the expression of

mRNA j, xj, is assumed to be normally distributed

around its mean expression value and the regulation

effects from miRNAs, ojk. These regressors are

divided into three factors: gt a tissue scaling factor

of miRNA expression, lk the degree of regulariza-

tion of miRNA k over all its putative mRNA targets

and�sjk an indicative variable determining whether or

not a putative target is a real target. The aim of the

model is to infer the probabilities of putative targets

of being real, p(sjk¼ 1jcjk¼ 1) by approximating the

posterior with variational inference techniques. In a

second version [82], GenMiR3, the model was ex-

tended to also account for the reliability of putative

interactions. The authors evaluated different se-

quence features (i.e. AU content, hybridization

energy) by adding logit priors to the GenMiRþþ

model.

A drawback of GenMiRþþ is that the expect-

ation maximization (EM) algorithm obtained from

variational inference is computationally expensive.

In HCtarget [81], a variation of GenMiRþþ, the

computing time is reduced by redefining some of

the priors and by solving the full posterior by

MCMC (Markov Chain Monte Carlo) techniques.

This method considers a different regulation effect

from each miRNA k for all its putative mRNA tar-

gets on each sample (i.e. variables gt and lk are

grouped into bkt). A major drawback of HCtarget

is that, as with MLR, its posterior is not suitable

for data where the number of regressors is higher

than the number of samples.

In GenMiRþþ and HCtarget, each miRNA is

assumed to regulate to ‘the same degree’ all its puta-

tive mRNA targets. However, since the regulatory

effect is governed by the sequence complementarity,

it seems natural to expect a different degree of regu-

lation from each miRNA k on each putative target

mRNA j. In a recently published work, the Bayesian

graphical approach [80], a different regulation effect

for each putative mRNA j—miRNA k pair is deter-

mined. Contrarily to GenMiRþþ, this model

groups all the effects into a single variable, ojk that

accounts for the regulatory effects from miRNAs. By

assuming a gamma prior over ojk, only

down-regulation effects from miRNAs are con-

sidered and the sparsity of the solution is enforced

[83]. This procedure can be seen as a Bayesian alter-

native of Lasso [84, 85]. Furthermore, authors use a

full MCMC procedure for the direct quantification

of the posterior. As in GenMiR3, this method also

considers the reliability of sequence-based putative

interactions by adding logit priors over sequence fea-

tures. For this method, the sequence features are the

scores (i.e. expected quality), or combination of

scores, of the putative interactions from different

databases.

RELATIONSHIPS BETWEEN
DIFFERENTMODELS
We have classified the methods into three main

groups. First of all, we include methods that perform

pairwise comparisons between mRNA and miRNA,

namely Pearson correlation, Spearman correlation

and MI (Figure 4a). The second group includes

MLR and regularized least squares (LASSO regres-

sion, RR and the elastic-net) (Figure 4b). Finally, the

different variants of Bayesian methods (GenMiRþþ,

HCtarget and the Bayesian graphical model) are

grouped (Figure 4c). As indicated before, the aim

of all these methods is to score the putative lists of

mRNA–miRNA interactions. Thus, in practice,

methods that provide similar ranking of their scores

can be considered to be related. According to this,

there are relevant relationships among and within

these groups to be pinpointed (arrows in Figure 4).

Concerning the first group, under the normality

assumption, MI can be derived from Pearson correl-

ation values rjk. MI is the quantity �1/2�log(1� r2
jk)

[86]. In this case, the ranking of MI and the absolute

value of the correlation is identical. This equivalence

clarifies that MI does not take into account the sign

of the interaction. Regarding the linear models, it is

well known that the elastic-net is an extension to

LASSO regression and RR). The elastic net is con-

verted into any of them by adjusting either of the

tuning parameters (n1 or n2) to zero. Of course, if

both tuning parameters of the elastic-net are set to

zero, no regularization is performed and is converted

into a MLR. Contrarily, if the tuning parameter of

the RR is assumed to be large, the matrix to be

inverted, in the explicit solution shown in Table 1

is almost diagonal and RR can be viewed as a scalar

product of vectors.

Apart from these relationships, there is one

non-obvious connection between GenMiRþþ

and RR. GenMiRþþ can be shown to be equiva-

lent to solve J independent RRs, one per each

mRNA (see Supplementary Data), in where gene
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expression data is normalized to have sample variance

equal to one (see Supplementary Data). This equiva-

lence is accurate for low values of a, the hyperpara-

meter of the degree of down-regulation from

miRNAs and this is the case in the GenMiRþþ

model. Due to the relationship between

GenMiRþþ and RR (see Figure 4), these RR

models have a large penalization parameter identical

for all mRNAs, i.e. GenMiRþþ can be further sim-

plified to a scalar product of vectors. Therefore, the

output of GenMiRþþ, the probabilities of each pu-

tative mRNA j—miRNA k interaction of being real

p(sjk¼ 1jcjk¼ 1), are proportional to the simple scalar

product,

pðsjk ¼ 1jcjk ¼ 1Þ / xj
� �

mj¼0js2
samples¼1

�zTk , ð5Þ

where xj
� �

mj¼0js2
samples¼1

is the standardized expression

of mRNAs and zT
k is the expression of the putative

miRNA regulators (see Supplementary Data).
Notice that once more, gene expression is
standardized.

The suggested approximation in Equation (5) is

quite accurate. The Spearman correlation is a good

measure to compare the ranking of the interactions

using both methods. This correlation ranges from

0.9913 to 0.9989 for different data sets. We have

compared the expression data used in GenMiRþþ

and it is available on http://www.psi.toronto.edu/

genmir/, acute lymphoblastic leukemia data from

Ref. [67], multiple myeloma Refs [87] and [88],

and NCI-60 data set from Ref. [71] (see

Supplementary Data for a brief description of the

data sets). For these data sets, the rankings provided

by Equation (5) or GenMiRþþ are almost identical

(see in Supplementary Data). However, Equation (5)

is several orders of magnitude less expensive in com-

putational time (0.025 versus 300 s). Since the rank-

ing is almost identical, in the following sections we

have used the approximation given by Equation (5)

instead of using the EM method proposed by

GenMiRþþ authors. The difference between

GenMiRþþ and the approximation given by

Equation (5) is negligible in all used data sets.

Although Equations (1), corresponding to Pearson

correlation and Equation (5), the approximation of

GenMiRþþ, are both scalar products of mRNA

and miRNA expressions, the solutions of

GenMiRþþ were shown by the authors to out-

perform those of Pearson correlation (and we have

also checked that this is indeed the case, see next

section). An interesting point to note here is

that the only difference between them is data

normalization.

SIDE BY SIDE COMPARISON
In this section, we compare the performance of the

different methods described in this article. However,

we could not run some of the methods due to several

reasons: (i) PLS method does not have the code

available and (ii) HCtarget is not suitable for data

Figure 4: Relationships between different models: a) variable dependency methods, b) algorithms based on
Regularized Least Squares and c) Bayesian Inference methods. Dashed boxes refer to algorithms that can only be
applied if the number of regressors is larger than the number of samples. In general, the number of samples for
which mRNA and miRNA expression is available is limited and the number of regressors tends to be higher than
that of samples.
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where the number of predictors is larger than that of

samples. The graphical Bayesian method is the only

method that considers the scores of the predictions of

putative interactions. These scores are difficult to

combine across different databases. Furthermore, in

the case where the scores from databases are not

considered, the graphical Bayesian method is sup-

posed to work as an alternative to Lasso regression.

For this reason, we decided not to include the

graphical Bayesian method in the analysis. In Ref.

[56], the elastic net is used to solve the proposed

problem. In this model, the effect of transcription

factors is also included. Preliminary results in our

analysis showed that elastic-net method for some of

the data sets behaved similarly to TaLasso (see

Supplementary Data). For the sake of simplicity,

we have not included these results in the main

manuscript since they only reproduce part of the

model in the cited reference. MI was determined

using the equivalence between correlation and MI

indicated in Figure 4. Due to this, we have deter-

mined two values for the MI: one obtained from the

Pearson correlation and the other from the Spearman

correlation. We refer to them as jPearson Cor.j and

jSpearman Cor.j, respectively.

We have used a simple and intuitive score to com-

pare the described algorithms: the number of experi-

mentally validated interactions among the

top-ranked predictions for each algorithm. A good

algorithm will expectedly provide a large number of

interactions that have already been experimentally

validated. The number of checked interactions has

been arbitrarily set to 1000, i.e. we score the quality

of the algorithms according to the number of vali-

dated interactions within the top-1000. Other num-

bers of interactions provide similar results.

In addition to this, since genes are expected to

behave coordinately, we have also computed the en-

richment on KEGG pathway categories within the

genes in the top-ranked interactions. It will be

shown that although these two measurements are

completely different, algorithms that perform well

according to the enrichment on experimentally vali-

dated interactions also perform well according to

KEGG pathway enrichment. The predicted inter-

actions are more likely to be true if the computed

KEGG pathways are related with the biology behind

the data set used. KEGG pathway enrichment ana-

lysis was performed by using GeneCodis 2.0 [60, 61]

for those 200 mRNAs with miRNA regulators

within the top predicted interactions (for more

information on enrichment analysis, refer to

Ref. [79]).

We used five different data sets to analyze the

relevance of the results: acute lymphoblastic leuke-

mia [67], multiple cancer class data [89, 90], multiple

myeloma [87] and [88], and NCI-60 cancer cell

panel [71] (downloaded from Ref. [91]) (see

Supplementary Data for a brief description of the

data sets). Results are shown in Figure 5 that shows

the experimentally validated interactions using

TarBase [46] and miRecords [47] and Figure 6 that

shows the enriched KEGG pathways (no enriched

KEGG pathway was found for MCC results).

Our results show that GenMiRþþ has a slightly

better performance than Correlation in terms of the

number of validated interactions. This improvement

is more apparent in the KEGG pathways enrichment

results. Correlation and MI obtain few or no path-

ways statistically significant. These results allow us to

conclude that data normalization has key importance

for miRNA target prediction.

Note in Figure 6 that MI results are outperformed

by plain correlation. One important drawback of MI

is that it does not take into account the sign of the

relationship. In the same way, the addition of

non-positive constraints to the LASSO improves

KEGG enrichment. This result was also observed

in Ref. [79]. It seems that considering only

down-regulatory effects is relevant to find the rela-

tionships between miRNA and their targets.

DISCUSSIONAND CONCLUSION
miRNAs are small RNA molecules (022 nt) that

interact with their target mRNAs inhibiting transla-

tion or/and cleavaging the target mRNA. This inter-

action is guided by sequence complementarity

through RISC compound (multiprotein complex

that incorporates mature miRNA) and results in

both the mRNA and protein levels reduction.

Deciphering miRNA targets is crucial for diagnosis

and therapeutics since miRNAs are involved in key

biological processes and different diseases. However,

miRNA regulatory mechanisms are complex and the

lack of a high-throughput and low-cost miRNA

target screening technique, make miRNA target pre-

diction laborious. Although, in the last years several

computational methods based on sequence comple-

mentarity of the miRNA and the mRNAs have

been developed, their predictions are inconsistent

and their expected false positive rates are large.
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Recently, new methods based on the joint analysis of

miRNA and mRNA expression for the filtering of

sequence-based putative targets have been proposed.

In brief, by assuming the expected inverse (or direct)

relationship between the expression of a miRNA

and its mRNA targets (or proteins), these methods

determine whether a putative target is real for a par-

ticular set of experimental data. These methods have

shown to be effective identifying the most promin-

ent interactions from the databases of putative targets

(see Supplementary Data for a brief analysis of the

added value of using expression data for target pre-

diction by using sequence-based predictions as initial

set of putative interactions).

Filtering of putative miRNA–mRNA interactions

involves three matrices: X, Z and C that represent

mRNA and miRNA expressions and putative lists of

targets, respectively. The models described in this

review use this information in different mathematical

models that have been grouped onto: dependency

analysis, linear regression (multiple and regularized)

and Bayesian methods. Among the different relation-

ships between the models described here, special

interest is on the one concerning GenMiRþþ and

RR. We have shown that owing to the low degree

of miRNA regulation considered in GenMiRþþ,

the ranking of its results can be obtained by applying

RR with a high regularization term. Furthermore,

we have shown that GenMiRþþ, in the same way

as Pearson correlation, can be expressed as a scalar

product of miRNA and mRNA expressions. The

only difference between both scalar products is data

normalization—the first standardizes only the ex-

pression of mRNAs while the latter standardizes

both, the expressions of mRNAs and miRNAs.

We have shown that this difference is crucial for

miRNA target prediction. Our KEGG enrichment

results have shown that GenMiRþþ recovers more

reliable interactions than Pearson correlation.

Most of the described methods account for

down-regulatory effects from miRNAs. This is

done indirectly—determining all the regressors and

restricting afterward their interest to the negative

ones—or directly—adding particular priors in

Bayesian methods or adding constraints to the

linear models to force them to only take into account

negative regressors. Few studies do also consider en-

hancement effects from miRNAs (i.e. analyzing

positive correlation values or using MI). However,

our results have shown that taking into account the

sign of the regulation improves the results, i.e. the

results are more enriched in experimental inter-

actions and are biologically sound.

In general, matrix C is considered to be an indi-

cator matrix, with values equal to 1 (putative target)

or 0 (not a putative target). This matrix is generally

created by assigning a 1 to those interactions of a

database that surpass a threshold and a 0 otherwise.

These scores indicate the reliability of the predicted

putative interaction on that database. Combining

Figure 5: Enrichment values on experimentally validated targets for different data sets and methods. Number of
experimentally validated targets predicted within the top-500 retrieved interactions.The names within an absolute
value indicate that they do not differentiate the sign of the relationships. In the case of TaLasso, the absolute value
indicates that non-positive restrictions are not considered. ALL¼ acute lymphoblastic leukemia, MM¼multiple
myeloma, MCC¼multiple class cancer.
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putative targets from different databases—by taking

their unions and/or intersections—allows their reli-

ability to increase. Some of the methods include the

scores of each interaction from a particular database

(or combinations of scores from different databases)

in their mathematical models. Among the methods

described in this review, only the Bayesian models

[80, 82, 92] account for these scores. GenMiR3 [82]

was the first model that included logit priors to con-

sider sequence features (i.e. hybridization energy,

AU content). Alternatively, the Bayesian graphical

method of Stingo et al. [80] uses similar logit func-

tions to include the scores of a database or a com-

bination of databases. The use of prior knowledge

over the reliability of each putative interaction can be

extended to the majority of the rest of the methods

of this review. For example, correlation can be mul-

tiplied—or modified in some way—by the reliability

of the interaction. The ranking will change accord-

ingly. In addition to this, in regularized least squares

methods the regularizing parameter can be weighted

according to each individual interaction. To this end,

Figure 6: KEGG pathway enrichment results for different methods and data sets. The names within an absolute
value indicate that they do not differentiate the sign of the relationships. In the case of TaLasso, the absolute value
indicates that non-positive restrictions are not considered. ALL¼ acute lymphoblastic leukemia, MM¼multiple
myeloma.
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it would be necessary to combine the scores of dif-

ferent sequence-based databases which limit the use

of these scores for miRNA target prediction. In this

respect, ExprTarget [92] combines the scores of dif-

ferent databases using logistic regression to provide

an overall score for each of the putative miRNA–

mRNA interactions. The probability of each

miRNA–mRNA interaction to be real from expres-

sion data is modeled via a logit function. In the end,

the weights of each putative interaction are deter-

mined also by using a logistic regression.

A possible limitation of these methods occurs if

samples are obtained from heterogenous experimen-

tal conditions. Since mRNA regulation is not only

driven by miRNAs, other regulators—such as tran-

scription factors—have larger effects on mRNA ex-

pression and target prediction become less reliable. In

these cases, it would be interesting to combine TF

activity—and other regulators—with miRNA activ-

ity. An example of this approach is Ref. [56]. Since

heterogenous sources of information can blur

miRNA effects on mRNA regulation, it would

also be interesting to develop mathematical methods

for data classification (i.e. a mixture of cancer samples

could be divided into different classes of cancers with

common groups of regulatory pathways). In this re-

spect, some authors have developed tools directed to

the search of miRNA regulatory modules that are

able to discern regulation between different samples

[93–98]. Clustering-based method could also be

used.

Although huge advances have been made in

miRNA target prediction, there is still much work

to do. Until high-throughput experimental tech-

niques reach the market, computational methods

will continue to be of high importance.

Combination of expression data with sequence-

based prediction have shown to be feasible.

Although, the number of predicted targets is still

high, these methods have marked new future work-

ing lines. In this respect, models that combine more

heterogeneous experimental data (i.e. TF, protein,

time-course data, miRNA transfection effects on

mRNA and proteins) could be more reliable on

the predicted miRNA–mRNA interactions.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� miRNAs down-regulate their target mRNAs. This effect has
shown to play a key role in different biological processes.

� There is still no high-throughput experimental technique for
miRNA targetprediction and thus, several computationalmeth-
ods have emerged. Nevertheless, their expected false positive
rates are still large and predictions of different methods do not
match at all. Some of these methods combine both expression
datawith sequence analysis.

� The integration of miRNA and mRNA expression data have
shown to be a good method for filtering sequence-based puta-
tive predictions. The algorithms to develop this integration can
be categorized into three groups: dependence-based methods
(Pearson and Spearman correlation and MI), MLR and regular-
ized least squares (MLR, Lasso, Ridge and Elastic-net), and
Bayesian inference methods (GenMiRþþ, HCtarget and a
Bayesian graphicalmethod).

� Their comparison shows: (i) that restricting the search of
miRNA regulation to down-regulation improves the reliability
of the results and (ii) that normalization of mRNA and miRNA
expressions is crucial formiRNA target prediction.
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