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Abstract

miRNAs are small RNA molecules (9 22nt) that interact with their corresponding target mRNAs inhibiting the translation of
the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target
mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence
complementarities. However, the number of false positives in these databases is large and they do not overlap completely.
Recently, it has been proposed to combine expression measurement from both miRNA and mRNA and sequence based
predictions to achieve more accurate relationships. In our work, we use LASSO regression with non-positive constraints to
integrate both sources of information. LASSO enforces the sparseness of the solution and the non-positive constraints
restrict the search of miRNA targets to those with down-regulation effects on the mRNA expression. We named this method
TaLasso (miRNA-Target LASSO).
We used TaLasso on two public datasets that have paired expression levels of human miRNAs and mRNAs. The top ranked
interactions recovered by TaLasso are especially enriched (more than using any other algorithm) in experimentally validated
targets. The functions of the genes with mRNA transcripts in the top-ranked interactions are meaningful. This is not the case
using other algorithms.
TaLasso is available as Matlab or R code. There is also a web-based tool for human miRNAs at http://talasso.cnb.csic.es/.
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Introduction

miRNAs are small RNA molecules (9 22nt) that regulate the

expression of their corresponding mRNA targets in many

eukaryotes. The imperfect base pairing of the miRNAs with the

39-untranslated region (39-UTR) of their targets can either inhibit

translation or cause mRNA cleavage [1]. Some authors have

recently stated that ‘‘miRNAs predominantly act to decrease target

mRNA levels’’ [2]. Although low translational repression with no

mRNA destabilization is also possible, the overall effect is the

down-regulation of both protein and mRNA concentrations. This

deregulation is key in a wide range of biological processes and

human diseases [3].

MiRBase [4] is the de facto standard database used to retrieve

data related to miRNAs. It currently contains near 1400 human

miRNAs (release 17). Considering that each miRNA has a

sequence compatible with around 200 target mRNAs, the number

of putative interactions is very large. Most of the computational

methods developed to identify mRNA-miRNA interactions are

based on sequence complementarities of miRNA and its mRNA

targets. These algorithms have been used to create databases of

interactions, such as miRBase [4], TargetScan [5–7], PicTar [8],

miRanda [9] or miRGen [10]. Unfortunately, the number of false

predictions using these computational methods is still high [11].

Although there are experimental tools for miRNA target

validation, several involved steps must be performed to verify

the authenticity of a miRNA target. Therefore, the number of

experimentally-validated targets is still very low. For instance,

TarBase [12] includes around 1300 experimentally-validated

interactions. This number is small if compared with the number

of predicted interactions in miRBase (.500000).

In recent years, different computational methods for miRNA-

mRNA interaction prediction that use expression data to decipher

miRNA targets have emerged. Some of them combine this

information with sequence based predictions to obtain more

reliable miRNA targets. Among them are GenMiR++ [13,14],

HOCTAR [15] or MAGIA [16]. The key assumption is that due

to the down-regulation effect of miRNAs on its targets, their

expression levels must be inversely related, i.e. if a particular

miRNA expression increases, the expression of its mRNA targets

must decrease.

The difference between these methods relies on the way they

use this information. For example, GenMiR++ uses a Bayesian

framework and states the probabilities of having an interaction
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between a miRNA and its putative targets. HOCTAR [15]

assumes that the expression of intronic miRNAs is strongly

correlated with the expression of the genes where they are located.

Therefore, gene expression can be used as an estimator of intronic

miRNA expression. This approach uses the advantage of a huge

number of samples, for which gene expression is available, to

obtain statistically significant results. In the end, HOCTAR uses

simply the correlation. This measure has been also used by other

authors for miRNA-mRNA target prediction [17–19]. On the

other hand, MAGIA uses the mutual information. A possible

drawback is that it is not possible to distinguish between positive

and negative regulations.

Recently, other methods based on expression data analysis for

miRNA-mRNA interaction prediction have been published

[20,21]. Jayaswal et al. [20] use a two step process that consists

of clustering each expression data for miRNA and mRNA

followed by a t-test to find significant miRNA-mRNA relation-

ships. Li et al. [21] apply Partial Least Squares Regression to a

preselected set of differentially expressed mRNAs and miRNAs.

Adding expression data to sequence based predictions has been

shown to reduce false positive rate [22].

We have developed the TaLasso algorithm that combines the

information of sequence databases with mRNA and miRNA

expression to quantify the down-regulation between miRNAs and

their putative targets. It can be considered as a filter to sequence-

based databases.

Our method is based on the LASSO regression. The norm-1

penalty term of LASSO ensures the number of predicted

interactions is small. In addition, we included non-positive

constraints to the LASSO regression to restrict the predicted

mRNA targets to those with down-regulation effects from

miRNAs. TaLasso uses as initial putative targets the union of

several sequence databases (miRGen [10], miRBase [4], miRanda

(microRNA.org) [9], TarBase [12], miRecords [23], miRWalk

[24] release of 2010). TaLasso was applied to two datasets with

matched samples of mRNA and miRNA expression data.

TaLasso was validated by measuring its ability to predict

experimentally-validated targets and by analysing the biological

relevancy of the predicted interactions. These results were

compared with other methods (GenMiR++ and Pearson correla-

tion). We illustrate that the top interactions predicted by TaLasso

are significantly enriched in validated targets and that this

enrichment is larger than using GenMiR++ or Pearson correla-

tion. Furthermore, the functions of the genes with mRNA

transcripts in the top-ranked interactions are biologically sound

in the context of the experiments being studied. We also show that

including the non-positive constraints improves the specificity of

the prediction using LASSO regression.

Materials and Methods

Given a set of miRNA-mRNA putative interactions and given

their expression values, TaLasso quantifies the down-regulation

effect of each miRNA on its mRNA targets. Due to the biological

complexity underlying mRNA regulation, this quantification is

made by considering several simplifications.

Assumptions
First of all, it will be assumed that the miRNAs are the only

regulators of mRNA expression, considering other possible effects

as part of the noise. Therefore, TaLassso –as other methods– is

able to detect only the most prominent interactions.

Secondly, the model assumes that the miRNAs down-regulate

their corresponding mRNA targets. Although the existence of

miRNAs that act as transcription factors [1] have been shown,

they will not be considered in the model.

Thirdly, TaLasso will only quantify the down-regulation effect

on those miRNA-mRNA interactions from an initial set of

putative miRNA-mRNA pairs (i.e. predicted from sequence based

algorithms). Consequently, TaLasso will not be able to recover

those interactions not included in this initial set of putative targets.

Finally, the logarithm of the mRNA expression will be assumed

to be linearly dependent on the logarithm of the expression of its

putative miRNA regulators.

Mathematical model
Let vectors xj = [xj1, xj2, … , xjI]1xI and zk = [zk1, zk2, … , zkI]1xI

be the logarithms of the expression levels of mRNA j and miRNA

k, in samples 1 to I. Consider also that there are J mRNAs and K

miRNAs. Let cjk be an indicator variable whose value is 1 if mRNA

j is a potential target of miRNA k predicted in sequence databases

and 0 otherwise. Then, a linear relationship between the logarithm

of the expressions of each mRNA j and the K miRNAs is assumed

and it is represented by the following linear model,

xj~
XK

k~1

bjk
:cjk

:zkzx0
j zej, ð1Þ

where ej is an error term and xj
0 = xj

0 ? [1, 1, … , 1]1xI is the

intercept term, i.e. the expected value of the logarithm of the

expression of mRNA j in the absence of regulation from miRNAs

in samples 1 to I. bjk is the amount of regulation for each miRNA -

mRNA pair, i.e. how much the miRNA down-regulates the target

mRNA. bjk and xj
0 are unknown.

Resolution of the linear model
In many cases, the number of miRNAs that putatively regulate

an mRNA is larger than the number of samples. Therefore

equation (1) is an undetermined system of equations. We propose

to solve Eq (1) for each mRNA using l1-regularized least squares

and adding non-positivity constraints:

min
bj ,x

0
j

xj{
XK

k~1

bjk
:cjk

:zk{x0
j

�����
�����

2

zlj
:
XK

k~1

bjk
:cjk

�� ��( )

subject to bjkƒ0, for k~1,2, . . . ,K :

ð2Þ

The l1-norm of the penalty term (
PK

k~1

bjk
:cjk

�� ��) enforces the

sparsity of the solution. It is adjusted with the tuning parameter lj.

The larger the value of this parameter the sparser the solution is.

Non-positivity constraints are added to ensure that the solution

includes only negative relationships between mRNA and miRNA

expressions. This is a convex problem and thus, if an algorithm is

able to find a local minimum, this minimum is guaranteed to be

also global.

Equation (2) is very similar to a LASSO regression problem.

The only differences are that Eq (2) includes a term that must not

be penalized (xj
0) and that there are non-positivity constraints.

Some LASSO packages that include inequality restrictions are

available and they can be accommodated to solve this optimiza-

tion problem [25–27].

We have adapted two solvers for this particular problem, one

for Matlab and the other one for R (http://cran.r-project.org/).

TaLasso can be run in either Matlab or R. Matlab code is adapted

from the l1_ls software (http://www.stanford.edu/,boyd/l1_ls/)

Quantification of miRNA-mRNA Interactions
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[26]. Some minor changes in the initial Matlab code boosted the

speed two-fold. R code was developed by using the package

Rcplex (http://CRAN.R-project.org/package = Rcplex) [27]. In

this case, the l1-regularized least square problem was converted

into a quadratic problem by expanding the norm-2 factor. Both

packages have comparable performance. Specifically, Matlab

package is 30% faster.

There is no method that provides statistical significance in the

context of regularized Least Squares with constraints. Although

bootstrap could be an alternative, the estimation is inappropriate

due to the bias and is time consuming. We have instead opted to

use the statistics of multiple linear regression to assign to the

solutions of TaLasso their p-vales pstatistical significance. In the

software, we have included a function called significance_beta, in

both R and Matlab codes (see texts S5 and S6 for further

information).

Selection of the l1-penalty
LASSO regression theory states [26] that the possible values of

the tuning parameter lj must lie within the interval [0, lj
max], being

lj
max equal to,

lmax
j ~2:max

k
xj
:zt

k

� �
:cjk

�� ��� �
: ð3Þ

If lj is zero, the standard minimum squares solution is obtained.

If lj is lj
max then the optimum solution is the null vector. The value

of lj can be selected by cross validation. It would be possible to

compute lj independently for each mRNA. However, this

approach requires many additional parameters in the model and

it is prone to overfitting. Instead of this, we select lj for every

mRNA as a fraction of a maximum value Lj. In the following, the

variable k = lj/Lj, same for all mRNAs, will be used to denote

these fractions.

TaLasso provides two possible ways to select Lj: the global and

the local methods. In the global method, Lj, is selected as,

Lj~L~ max
j

lmax
j

� 	
Vj ð4Þ

And therefore,

lj~lG~kGL~kG :max
j

lmax
j

� 	
Vj: ð5Þ

The estimation of lG is called global tuning parameter in the rest of

the paper and provides a single penalty term for every mRNA.

In the local method Lj is selected as,

Lj~lmax
j Vj ð6Þ

and therefore,

lL
j ~kLlmax

j : ð7Þ

The estimation for lj
L in Eq (7) will be referred to as the local

tuning parameter.

In either case we used a single kL or for kG for all mRNAs.

Notice that, although kL is the same for all mRNAs, lj
max is not

and thus, lj
L will be different for each mRNA. In our case studies,

global selection outperforms local selection. Results are included in

the text S1.

The values of kG (and kL) were determined by testing the factors

{1/10000, 1/100, 1/50, 1/20, 1/10, 1/5, 1/3, 1/2} using Leave

One Out Cross Validation (LOOCV). This method performs the

optimization using all samples but one and validates the results

with the sample left out. This procedure is repeated for every

sample. The selected value of k is the one that provides the

minimum square error (MSE) in the samples left out training the

algorithm with the other samples, i.e,

min
k

MSEkð Þ~ min
k

1

I

XI

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

j~1

xj,i{x̂xj,i

�� ��2

2

vuut
0
@

1
A~

~ min
k

1

I

XI

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

j~1

xj,i{
XK

k~1

b̂bjk
:cjk

:zk,i{x̂x0
j,=i

�����
�����

2

2

vuut
0
@

1
A:

ð8Þ

where b̂bjk and x̂x0
j,?i are the estimations of the down-regulation

and the intercept obtained with TaLasso for the mRNA and

miRNA expression of all samples but i. x̂xj,i is the predicted

expression value of mRNA j in sample i determined by the values

b̂bjk. Finally, xj,i and zk,i are the expressions of mRNA j and miRNA

k on sample i.

Results

We have implemented the solvers for Eq (2) in R and Matlab.

Putative and experimental interactions are included in the

downloadable software. We have also developed a convenient

web page that performs this computation. We named them

‘‘TaLasso’’. Therefore, TaLasso is both the web page and the

algorithm adaptations that solve the problem described in Eq. (2).

The result is the amount of down-regulation of a miRNA for their

targets in a particular experiment.

We run TaLasso for two real datasets and validate the results by

studying the enrichment on experimentally-validated targets. We

also analyze the biological relevance of the predicted interactions.

In this section we present these results and include a comparison

between TaLasso, GenMiR++ and correlation methods.

Expression datasets
TaLasso has been tested with two datasets with matched miRNA

and mRNA expression data. The first dataset, which will be referred

as Multi Class Cancer (MCC) dataset, is composed of miRNA

expression data from [28] and mRNA expression data from [29].

This dataset was used in GenMiR++. The second one, which will be

referred to as acute lymphoblastic Leukemia DataSet (LDS), is publicly

available in GEO (GSE14834). It corresponds to expression profiles

published by [30] and is part of a case study used in MAGIA. In

both datasets, the expression values were further normalized by

subtracting from each mRNA or miRNA their median value.

Enrichment on experimentally-validated targets
We compared TaLasso results with GenMiR++ and the

Pearson correlation. We were not able to reproduce mutual

information results obtained in MAGIA. Nevertheless, it has been

stated that for normal random variables, Mutual Information (MI)

can be estimated as a function of the Spearman or the Pearson

correlation coefficient [31]. Therefore, if normal conditions are

met, the ranking of MI results and the ranking of the absolute

value of correlation are expected to be similar. We have checked

Quantification of miRNA-mRNA Interactions
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that correlation performs better than the absolute value of the

correlation.

The comparison of the scoring algorithms is based on

measuring the enrichment of their results on experimentally-

validated interactions. If the top ranked interactions of an

algorithm have more experimentally-validated targets, this algo-

rithm is expected to perform better as more predicted interactions

are validated.

The union of miRBase, miRanda, miRGen, miRecords,

TarBase and miRWalk were used as the initial set of interactions.

Among them, TaRBase (v5), miRecords (May 2010) and miR-

Walk databases were used as reference of experimentally-validated

targets. Whereas the interactions included in TaRBase and

miRecords have been manually curated, those in MiRWalk were

automatically extracted from the literature using text mining

techniques. Therefore, this last database includes less reliable but

more interactions than the other two.

Figure 1 shows the Venn diagram of the number of interactions

provided by each database and the intersections among them. The

number of interactions in any particular experiment is usually

smaller since a particular experiment includes only a subset of the

mRNAs and miRNAs in the databases. Nevertheless, the initial set

of interactions comprises more than half a million putative

interactions. From them, only a few (,1000 or 10000 depending

on the database) correspond to the experimentally-validated

targets.

Applying TaLasso to the MCC and the LDS datasets, b, the

downregulation effect of each miRNA on its targets was obtained.

For both datasets we performed an enrichment analysis using the

results provided by TaLasso, GenMiR++ and Correlation to

mRNAs with at least one experimentally-validated miRNA target.

The aim of this analysis is to compare each of these algorithms in

terms of the number of experimentally-validated interactions.

The enrichment analysis was developed as follows. Firstly, the

interactions were ranked according to the scores provided by each

method. Secondly, taking the top-ranked n interactions, we

counted the number of experimentally-validated targets within

them. With this data, we compute the corresponding p-value using

the hypergeometric distribution. The hypergeometric distribution

is a discrete probability distribution that describes the probability

of obtaining p successes (experimentally-validated interactions)

when n elements (selected interactions) from a finite population

without replacement (the union of all the putative interactions) are

drawn.

These p-values help to compare the algorithms: for a given n

(number of selected interactions) the smaller the p-value, the more

enriched the solution in experimentally-validated interactions is.

We compared the algorithms using two scores: the number of

experimentally validated interactions in the top-500 predicted

interactions and the minimum p-value on the enrichment curves.

In the second case we also provide the number of experimentally-

validated targets (NE) and the amount of predicted interactions

drawn (NT) on that point.

The following subsection shows the enrichment results for the

union of TarBase and miRecords. The enrichment for miRWalk is

included in text S1 and shows a similar trend.

Multi Class Cancer (MCC) expression data. The dataset

used in GenMiR++ is a set of 88 paired cancer and normal

samples with mRNA data from [28] and miRNA expression data

from [28]. The mRNA expression data was measured with

oligonucleotide microarrays Hu6800 and Hu35KsubA GeneChips

(Affymetrix, Santa Clara, CA). On the other hand, the miRNA

expression was obtained using bead-based flow cytometry. The

dataset consists of normal and cancerous counterparts from

bladder, breast, colon, kidney, lung, pancreas, prostate and uterus

samples, ovary cancer, melanoma and mesothelioma samples with

no normal references. We compiled the expression data from

GenMiR++; that consists of 114 human miRNAs and 16063

mRNAs. Gene probe names from Hu6800 and HuK35SubA were

matched with Ensembl. Correspondence was not univocal and the

expression of ensemble ID genes with more than one associated

probe was obtained by calculating their means. The final number

of miRNAs and mRNAs after the intersection of the data with the

databases included in TaLasso are 104 miRNAs and 9559

mRNAs. The total number of putative targets is 133005.

For this dataset, the minimum MSE value for kG corresponds to

1/50 (figure 2) and optimal values for enrichment occur for kG

about 1/10 or larger (figure 3).

The number of experimentally-validated targets within the first

500 top-ranked targets using kG higher than 1/10 is about 70%

larger than using GenMiR++ or correlation (Table 1). Further-

more, the minimum p-values are lower and maximum enrichment

values are higher for TaLasso than for GenMiR++ and

Correlation.

Figure 1. Shared interactions among the different databases of human miRNA targets that have been used as initial set of putative
interactions. The overlap among the different databases is small. With reference to databases with experimentally-validated targets, the union of
miRecords and TarBase includes 623 interactions that are also cited in any of the computationally predicted databases. This number rises to 4372 in
case miRWalk is also considered.
doi:10.1371/journal.pone.0030766.g001
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In the case of miRWalk, the minimum p-value is obtained for a

larger number of interactions than for the union of TaRBase and

miRecords. We presume that this larger value is due to the larger

number of interactions included in miRWalk than in the union of

TaRBase and miRecords. Nevertheless, in the first 500 targets

drawn, more than 1/3 of the targets are included in miRWalk.

In order to determine the effect of the addition of non-positivity

constraints in target prediction, we compared enrichment results

of TaLasso with and without the addition of these constraints. The

results indicated that the enrichment values were much higher

when non-positivity constraints were considered. Both figures of

the enrichment values on the union of TaRBase and miRecords,

and on miRWalk are shown in the figure S1.

Acute Lymphoblastic Leukemia DataSet (LDS). The

dataset used in MAGIA is a set of 19 paired T-lineage and B-

lineage expression for Acute Lymphoblastic Leukemia samples

(ALL) with mRNA and miRNA data from [30]. MiRNA data was

obtained with miRHuman 9.0 array from LC Sciences and

mRNA data with HG-U133 Plus 2.0 array from Affymetrix. The

data is composed of: B-ALL with BCR/ABL, E2A/PBX1 and

MLL/AF4 translocations, B-ALL without translocations, T-ALL

with SIL/TAL translocations and T-ALL with no translocations.

The final common set of mRNAs and miRNAs (after

intersection of the data in the arrays with the data included in

TaLasso) was 16590 mRNAs and 465 miRNAs. The total set of

initial putative targets was of 748305.

For LDS dataset, minimum norms for LOOCV were found for

kG equal to 1/10 or higher (figure 2). The best enrichment results

were obtained for kG higher or equal to 1/5 (figure 4 and table 2).

Figure 2. MSE errors for Cross Validation analysis for global tuning parameters. In the figure the LOOCV mean squared errors for different k
values of the global tuning parameter for MCC and LDS datasets are shown.
doi:10.1371/journal.pone.0030766.g002

Figure 3. Enrichment on experimentally-validated targets for
MCC dataset. For each value of the tuning factor and different
number of predicted interactions, the figure shows the probability of
drawing the predicted number of experimentally-validated targets by
using a hypergeometric test. The figure shows TaLasso enrichment
results for different kG values (in blue), compared to the enrichment
values of GenMiR++ (black crosses) and Pearson Correlation (black
dashed).
doi:10.1371/journal.pone.0030766.g003

Table 1. Maximum enrichment values on experimentally-
validated targets for MCC dataset.

TaRBase U miRecords miRWalk

method NE/NT p-value NE
500 NE/NT p-value NE

500

TaLasso (1/2) 105/777 4.17E-17 67 1761/7978 2.70E-52 164

TaLasso (1/3) 208/2141 4.64E-16 70 1301/5591 2.20E-48 165

TaLasso (1/5) 160/1413 3.81E-18 65 1791/8269 1.70E-47 172

TaLasso (1/10) 113/858 1.62E-17 74 1441/6459 2.10E-43 170

TaLasso (1/20) 138/1207 6.60E-16 70 1226/5579 8.10E-33 149

TaLasso (1/50) 165/1689 1.16E-12 58 2420/12738 3.00E-23 106

TaLasso (1/100) 185/1942 3.05E-13 53 1348/6775 1.30E-17 97

GenMiR++ 60/616 3.35E-05 46 1304/6614 1.30E-15 116

Correlation 63/729 6.78E-04 38 711/4004 7.90E-03 91

The table shows the maximum enrichment values (point of minimum p-value)
for the union of TaRBase and miRecords, for MCC dataset. NE: is the number of
experimentally-validated targets rescued in the point of minimum p-value and
NT: is the total number of predicted targets in that minimum. NE

500: is the
amount of experimentally-validated targets in the first 500 predicted
interactions.
doi:10.1371/journal.pone.0030766.t001
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The number of experimentally-validated targets in the first 500

interactions for LDS dataset is smaller than for MCC but still

higher than using GenMiR++ or correlation. In the case of the

miRWalk database the difference is more apparent.

Once again, results with non-positivity constraints performed

better than TaLasso without these constraints. These results are

shown in the figure S2.

KEGG pathway enrichment
In order to analyze the biological relevance of the results,

KEGG pathway enrichment analysis and a literature review of the

experimentally-validated targets predicted were carried out. We

selected kG = 1/5 and 1/10 in MCC and kG = 1/2 and 1/3 in

LDS TaLasso results for their comparison with the results of

GenMiR++ and Pearson Correlation.

GeneCoDis 2.0 web-based tool [32,33] was used for KEGG

pathway enrichment analysis. We measured the statistical

significance using the hypergeometric distribution. Afterwards,

the p-values were corrected by FDR. Enrichment of KEGG

pathways of the first 200 different genes within the top-ranked

interactions was then computed.

Results for Multi Class Cancer (MCC) data. A large

amount of experimentally-validated interactions within the top

500 predicted by TaLasso corresponded to miR-1. This did not

occur to the top 500 interactions of GenMiR++ and Pearson

Correlation. However, GenMiR++ predicted two of those miR-1

targets in the top 500 interactions.

Although miR-1 is muscle specific, we found relationships

between miR-1 and cancer. In MCC data, miR-1 was found to be

differentially expressed between normal and tumoral colon

samples as was also observed in [34]. We found that miR-1

expression was also down-regulated in normal prostate and uterus

tumors in MCC data. Furthermore, some of the targets predicted

by TaLasso for miR-1 were related to the cancers in MCC data:

for instance, MCM7, related to prostate cancer progression [35]

and TAGLN2, a colorectal cancer biomarker [35].

No KEGG pathway enrichment related to cancer was observed

either for TaLasso or GenMiR++ and Correlation. We associated

the lack of KEGG enrichment to the large number of cancer types

in MCC data.

Contrary to KEGG pathway analysis, the literature showed

several associations with cancer for the experimentally-validated

targets. The number of experimentally-validated interactions

associated to cancers in MCC data was higher for TaLasso than

for GenMiR++ and Pearson Correlation (table 3, corresponding

references are included in text S3).

Results for Leukaemia DataSet (LDS). In LDS, several

significant KEGG pathways were found for TaLasso and

GenMiR++ results (figure 5). TaLasso pathways showed to be

enriched in genes associated to T- and B- cells, while GenMiR++
results were only enriched on pathways associated to T- cells.

Furthermore, the number of genes associated to hematopoietic cell

lineage and primary immunodeficiency was higher in TaLasso.

Other diverse enriched KEGG pathways associated to immune

diseases were also found by TaLasso results.

Concerning literature review of the experimentally-validated

targets within the top 500 interactions (table 4, corresponding

references are included in text S4), results showed a similar

number of predicted interactions for GenMiR++ and TaLasso.

Among the list of interactions of table 4, BAALC, FTL3, CCNA1

and CD19 are of particular interest.

ALL leukemia with MLL translocation –called MLL– is

characterized to have a high expression of HOXA9, FLT3, CCNA1 and

MEIS1 and a low expression of MME. This expression profile

allows MLL to be differentiated from other ALL types [36]. For

instance, HOXA9 and CCNA1 were found to be highly expressed

on LDS data in samples with a MLL/AF4 translocation.

BAALC seems to be relevant, not only for differentiating acute

myeloid leukemia [37] but also for prognosis in adult T-ALL; high

BAALC and ERG expressions are associated with a high risk of

relapse and inferior survival [38].

Furthermore, CD19 and miR-29c were not predicted by

GenMiR++ and were found to be related to Chronic Lymphocytic

Figure 4. Enrichment on experimentally-validated targets for
LDS dataset. For each value of the tuning factor and different number
of predicted interactions, the figure shows the probability of drawing
the predicted number of experimentally-validated targets by using a
hypergeometric test. The figure shows TaLasso enrichment results for
different kG values (in blue), compared to the enrichment values of
GenMiR++ (black crosses) and Pearson Correlation (black dashed).
doi:10.1371/journal.pone.0030766.g004

Table 2. Maximum enrichment values on experimentally-
validated targets for LDS dataset.

TaRBase U miRecords miRWalk

method NE/NT p-value NE
500 NE/NT p-value NE

500

TaLasso (1/2) 388/14688 4.35E-12 23 4495/
50098

2.40E-46 83

TaLasso (1/3) 313/
11036

5.00E-13 22 4567/51110 2.20E-45 90

TaLasso (1/5) 276/9506 1.94E-12 20 3359/36419 7.70E-41 75

TaLasso (1/10) 356/13234 6.80E-12 14 5559/64662 2.30E-38 42

TaLasso (1/20) 503/20417 1.58E-11 10 5866/69711 9.70E-30 42

TaLasso (1/50) 462/18408 2.00E-11 11 7368/89276 1.10E-33 39

TaLasso (1/100) 583/24350 3.76E-12 13 8435/103517 5.00E-37 43

GenMiR++ 165/5936 2.80E-06 21 1908/21185 6.90E-17 50

Correlation 208/8040 1.51E-05 16 662/7599 8.62E-05 41

The table shows the maximum enrichment values (point of minimum p-value)
for the union of TaRBase and miRecords, for MCC dataset. NE: is the number of
experimentally-validated targets rescued in the point of minimum p-value and
NT: is the total number of predicted targets in that minimum. NE

500: is the
amount of experimentally-validated targets in the first 500 predicted
interactions.
doi:10.1371/journal.pone.0030766.t002
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review.

MME, FLT3 and CD19 genes were also found on KEGG

pathway enrichment analysis associated to hematopoietic cell

lineage pathway (the list of mRNAs on each KEGG pathway can

be seen in text S2; MME and FLT3 appeared in TaLasso results

(kG = 1/2 and 1/3) and the last one in GenMiR++ results).

Implementation
There is a convenient web-based tool available at http://talasso.

cnb.csic.es/, which implements TaLasso method, Pearson Corre-

lation and GenMiR++ algorithms.

In order to run TaLasso in the web page, two tab- separated

text files must be uploaded; one with mRNA expression data and

the other with miRNA expression data. Afterwards, the user can

select the databases for scoring and enrichment analysis, the units

of miRNA data (DDCts or expression values) and the algorithm to

score the interactions.

The resulting targets are sorted by computed score and it is also

shown if they are included in the given experimental validated

databases. For KEGG pathway enrichment analysis of the results,

a link to GeneCoDis 2.0 is added.

Matlab or R codes for TaLasso are also downloadable from

the web page. A larger description of the tool is included in the

text S5.

Discussion

We have shown that TaLasso is an effective algorithm to predict

mRNA-miRNA interactions. We have compared TaLasso with

GenMiR++ and correlation. Two validation methods have been

used: enrichment of the predictions on experimentally- validated

targets and biological interpretation of the top-ranked interactions.

Results have shown that top interactions predicted by TaLasso

are: significantly more enriched on validated targets and

biologically more meaningful; more than the results of GenMiR++
and correlation.

Even though, in the case of MCC, Talasso showed no enriched

pathways, none of the other methods showed any enrichment of

pathways either. Probably, the lack of enriched pathways is more

related with the data themselves than with the scoring method.

The main assumptions in TaLasso are the down-regulation

effect of miRNAs on mRNA targets and the enforced sparseness of

the solution. One of the key assumptions in TaLasso is that

miRNAs only down-regulate their corresponding targets. This

assumption has been included in LASSO by adding non-positivity

constraints. However, we have also solved equation (2) without

these constraints and showed that the obtained results are clearly

inferior. One surprising result of our analysis is the poor

performance of the correlation coefficient. We hypothesize that,

if an mRNA is being regularized by two miRNAs, each

acting (expressed) in different conditions, the correlation

Table 3. Predicted experimentally-validated targets and the cancer to which they have been related in the literature: results for
MCC dataset.

Interactions Database Method Associated to

Gene miRNA TaRBase miRecords miRWalk
TaLasso
(1/5)

TaLasso
(1/10) GenMiR++ Correlation OV BC EC CC LC BrC NC PC GC

EEF1A2 let-7f X X X X X

FSCN1 miR-133a X X X X X

FSCN1 miR-145 X X X X X X

BRAF miR-192 X X X

CCND1 miR-194 X X

HOXD10 miR-200c X X X X X X

CDKN2A miR-99a X X X

TFF1 let-7f X X X X

CEACAM5 miR-143/145 X X X

KRT14 miR-143 X X X

KRT7 miR-145/195 X X X

INS miR-27a X X X X

IGFBP6 miR-27a X X X X

PIGR miR-125b X X X X

BRAF miR-145 X X X

PLK1 miR-100 X X X

BAK1 miR-125b X X X

E2F1 miR-195 X X X

TWIST1 miR-141 X X X

TWIST1 miR-200c X X X X

OV: Ovarian Cancer, BlC: Bladder Cancer; EC: Esophageal Cancer; CC: Colon/Colorectal Cancer; LC: Lung Cancer; BrC: Breast Cancer, NC: Nasopharingeal Cancer, PC:
Prostate Cancer; GC: Gastric Cancer.
The experimentally-validated targets included in the top 500 targets predicted were selected and their literature references included on TaRBase, miRecords and
miRWalk were analyzed in search of biological relevancy. In the table only those interactions with a literature reference related with MCC environment have been
included. This was made for the predictions of TaLasso, GenMiR++ and Pearson Correlation.
doi:10.1371/journal.pone.0030766.t003
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Figure 5. KEGG pathway enrichment results for LDS dataset. Enrichment analysis on KEGG pathways of the 200 top-ranked genes. The figure
shows the results for TaLasso, GenMiR++ and Pearson Correlation. In the figure, the x-axis indicates the number of mRNAs on each enriched pathway.
The associated p-value is also shown. The list of genes on each enriched KEGG pathway is included in text S2.
doi:10.1371/journal.pone.0030766.g005

Table 4. Predicted experimentally-validated targets and the cancer to which they have been related in the literature: results for
LDS dataset.

Interactions Exp. Val. Database Method Associated to

gene miRNA TaRBase miRecords miRWalk
TaLasso
(1/2)

TaLasso
(1/3) GenMiR++ Correlation CLL ALL AML

IC, IR,
HSC

GPR160 miR-125b X X X X

FLT3 miR-148a X X X X

BAALC miR-148a X X X X

TCL1A miR-15a, miR-16 X X X

TCL1A miR-181b, miR-29b X X X

TCL1A miR-34b X X X

CD19 miR-29c X X X X

HLA-DPA1 miR-181a, miR-223 X X X

KIT miR-221, miR-222 X X X X X X

ZAP70 miR-155 X X X

ZAP70 miR-16 X X X

ZAP70 miR-181a X X X

PLK2 miR-126 X X X

ETS1 miR-155 X X X

HOXA9 miR-126 X X X

CCNA1 let-7b X X X X X

CLL: Chronic Lymphoblastic Leukaemia, ALL: Acute Lymphoblastic Leukaemia, AML: Acute Myeloid Leukaemia, IC: Immunce Cells, IR: Immune Response, HSC:
Haematopoietic SC.
The experimentally-validated targets included in the top 500 targets predicted were selected and their literature references included on TaRBase, miRecords and
miRWalk were analyzed in search of biological relevancy. In the table only those interactions with a literature reference related with LDS environment have been
included. This was made for the predictions of TaLasso, GenMiR++ and Pearson Correlation.
doi:10.1371/journal.pone.0030766.t004
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between these miRNAs and the mRNAs will be poor. In the

contrary, TaLasso and GenMiR++ will assign high scores to both

miRNAs since the combination of their expressions explain that of

the mRNA.

TaLasso assumes that the only regulators of mRNA expression

are the miRNAs. This means that in case large numbers of

conditions are considered this assumption is less feasible and thus,

TaLasso will be unable to retrieve subtle miRNA-mRNA

interactions. Even though results for MCC (that include many

different conditions) show enrichment in experimentally validated

interactions; GenMiR++ and Pearson correlation are also able to

recover a significant number of validated interactions.

We compared two different selections of the penalty term: using

the same penalty (global selection) and different penalties (local

selection) for all the mRNAs. Best results were obtained using the

global selection. An intuitive explanation of this could be the

following, adjusting the l1-regularized least-squared problem for

each of the mRNAs, retrieves the most interesting miRNAs

regulators for each mRNA. On the contrary, a global regulari-

zation parameter makes the solutions obtained for each of the

mRNAs comparable between them. Intuitively, a general

regularization parameter makes TaLasso select the best interac-

tions from the whole set of putative interactions.

In conclusion, TaLasso solves an l1-regularized least-squared

convex problem with non-positive restrictions to score putative

targets by using the expression data of mRNAs and miRNAs.

TaLasso results for MCC and LDS datasets show that the

enrichment in experimentally validated targets is larger than using

other known methods. Furthermore, the targets and interactions

obtained by TaLasso are biologically more meaningful.

TaLasso is publicly available as Matlab or R programs. There is

also a web-based tool (http://talasso.cnb.csic.es/).

Just before the submission of this manuscript, we became

aware of a related works by Lu et al. [39] (‘‘A LASSO regression

model for the construction of microRNA target regulatory

networks’’). These authors consider the use of LASSO regres-

sion for deciphering miRNA-mRNA interactions by using

expression data, sequence based predictions, RISC availability

and miRNA co-regulation. The main difference between this

work and this manuscript is that they do not include non-

positivity constraints in their regularized least squares. Here we

have shown that the addition of non-positivity constraints is crucial

for miRNA-mRNA interaction search. We also provide a

convenient web-page to test our model making it more readily

available.
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