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Abstract
Background: Fitting four-parameter sigmoidal models is one of the methods established in the
analysis of quantitative real-time PCR (qPCR) data. We had observed that these models are not
optimal in the fitting outcome due to the inherent constraint of symmetry around the point of
inflection. Thus, we found it necessary to employ a mathematical algorithm that circumvents this
problem and which utilizes an additional parameter for accommodating asymmetrical structures in
sigmoidal qPCR data.

Results: The four-parameter models were compared to their five-parameter counterparts by
means of nested F-tests based on the residual variance, thus acquiring a statistical measure for
higher performance. For nearly all qPCR data we examined, five-parameter models resulted in a
significantly better fit. Furthermore, accuracy and precision for the estimation of efficiencies and
calculation of quantitative ratios were assessed with four independent dilution datasets and
compared to the most commonly used quantification methods. It could be shown that the five-
parameter model exhibits an accuracy and precision more similar to the non-sigmoidal
quantification methods.

Conclusion: The five-parameter sigmoidal models outperform the established four-parameter
model with high statistical significance. The estimation of essential PCR parameters such as PCR
efficiency, threshold cycles and initial template fluorescence is more robust and has smaller
variance. The model is implemented in the qpcR package for the freely available statistical R
environment. The package can be downloaded from the author's homepage.

Background
Quantitative real-time polymerase chain reaction (qPCR)
has become an invaluable tool for monitoring gene
expression changes, combining the sensitivity of the PCR
technique with the ability to quantify transcriptional
changes with high accuracy [1]. Several different methods
exist in respect to hardware (i.e. cappillary-based systems
or thermal block-based systems) or fluorescence chemis-

try and design. Using the DNA intercalating dye SYBR
Green I is one of most widely applied systems, as the flu-
orescence readout can be obtained from any PCR ampli-
con irrespective of its sequence. This way qPCR
experiments can be conducted fast and with many differ-
ent sequences, as is the case in screening and evaluating
differential gene expression obtained from microarray
experiments [2,3].
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When investigating differential gene expression, qPCR
data of two or more different conditions (such as control/
treatment or healthy/pathological) are compared by using
the fluorescence data acquired by the hardware. One
approach is the comparison of the threshold cycles, when
the fluorescence of the qPCR reaction rises significantly
above the background level, commonly done by the ΔΔCt
methods. Originally developed with the tenet that the
PCR efficiency is 2 [4], this was soon extended by the long
known observation that PCR efficiency can have smaller
values and be very different between two different ampli-
cons, as is the case when normalizing a gene of interest
against a 'housekeeping' gene. This necessitates the calcu-
lation of the efficiency in order to derive a realistic esti-
mate of the expression changes. Various algorithms have
been developed such as estimation from the slope of a cal-
ibration curve [5,6] or from a linear fit of the logarith-
mized data within the exponential region either defined
by the 'midpoint' [7] or the region with highest linearity
('window-of-linearity')[8].

In contrast to the above described linear quantitation
methods, sigmoidal models have been developed for
non-linear fitting of the PCR data, most commonly the
Boltzmann or logistic sigmoidal function [9,10,17]. The
advantage of non-linear fitting is the paradigm that PCR
efficiency is not a constant but a variable that changes dur-
ing PCR, having a maximum in the exponential phase of
the reaction and declining in later cycles of the reaction
when reagents get depleted, thus leading to the sigmoidal
curvature. Non-linear fitting can then be used to calculate
threshold fluorescence, cycle-dependent efficiency (Ecyc)
and estimation of the starting template amount (F0). The
described sigmoidal qPCR models are four-parameter
models that define by their fitted function the parameters
ground asymptote, slope, point of inflection and maxi-
mum asymptote. The fitted parameters of logistic curves
describe the qPCR data usually well and supersede other
models like Gompertz and Chapman [11].

Although PCR data can be fitted with the four-parameter
approach, this model implies symmetry of the lower and
upper part of the curve, which results in the same curva-
ture on either side of the inflection point. We found that
this poses some essential problems that needed to be
solved. Firstly, it is not evident that qPCR curves can be
assumed to be symmetric. That this is indeed not the fact
will be shown in this work. Secondly, and most important
for the quantification aspect, is that fitting four-parameter
models with symmetry as an inherent constraint onto
asymmetric data will consequently lead to suboptimal fits
and estimation of parameters [12].

We investigated the effect of applying logistic and also log-
logistic five-parameter models to qPCR data, in which the

fifth parameter takes a possible asymmetrical structure of
the data into account. Five-parameter models have only
just recently found their way into the dose-response anal-
ysis of immunological data [13].

Furthermore, we tested the significance of this approach
with various statistical measures by comparing to fits of
models with less parameters. The here described algo-
rithms are implemented (besides many other functions)
in the qpcR library [22] extension for the open source sta-
tistical programming environment R [23].

Results
The f-parameter in different PCR regimes
Asymmetry of the lower and upper part of the sigmoidal
curve (in respect to the inflection point) is the main fea-
ture that discriminates the five-parameter models from
the four-parameter models. The asymmetry is governed by
the fifth parameter which we will denote f in the sequel.
The f-parameter has a strong effect on the general fit which
is exemplified by altering the f-parameter of a perfect five-
parameter sigmoidal fit while keeping all other parame-
ters constant (Figure 1). Changing the f-parameter also
influences to a high degree the parameters b (slope) and
e, which is a consequence of all parameters being in the
denominator of the five-parameter function (Equations 1
and 2). As a consequence of this, the non-linear fitting
procedure does not only add a fifth parameter to the four-
parameter model, but also adjusts all other parameters to
minimize the sum of squared residuals, such that the two
models are not directly comparable from the resulting
parameter values; for example the parameter e is no longer
the inflection point of the sigmoidal curve when f ≠ 1.

The estimation of the f-parameter in two different classical
qPCR scenarios was investigated. The first experiment
(Scenario A), obtained from 15 qPCR runs with slightly
differing starting template amounts, resulted in raw fluo-
rescence data with similar curvature but different thresh-
old cycles (Figure 2). Although these varied within a
window of 3 cycles (which would be equivalent to a dif-
ference in starting template of 8-fold, simplifying an effi-
ciency of 2), the f-parameter stayed constant at a value of
0.837 ± 2.9%. A different dataset (Scenario B) from two
qPCR runs with slightly differing amounts of Taq
polymerase, featuring exactly the same threshold cycles
(13.6 ± 0.3 cycles) but different curvature, showed very
different f-parameters. An effect of the f-parameter on the
e-parameter (Figure 3) is also evident. The values for e do
not define the point of inflection as is the case in four-
parameter models. Thus, one must be cautious to com-
pare the two models in respect to the obtained parame-
ters.
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Model selection for the best fit and statistical analysis
In order to compare the five-parameter models with their
according four- or three-parameter versions, a proper sta-
tistical measure for the goodness-of-fit of two different
models has to be established. The most common method
for comparing models that are nested is the F-test based
on the residual variance from the fit [18], which is also the
method we applied in our context and is the basis of anal-
ysis within the qpcR package. This gives rise to comparison
of models within a nested regime, i.e. the same basic for-
mula but with an added parameter. The F-test was used for
the investigation of optimized fits in the analysis of PCR
data, comparing either the five-parameter logistic func-
tion with its four-parameter counterpart (in short: 'b5'
with 'b4'), or the according log-logistic functions (in
short: 'l5' with 'l4'). The best model is selected when the
F-test between two successive models results in p < 0.05.
A typical outcome of the model selection process with a
serial dilution experiment (seven 10-fold dilutions, with
four replicates each) is depicted in Figure 4, with the ten-
dency to show significantly better fits for the 'b4' model

than the 'b3' model in PCR data with higher threshold
cycles, i.e. higher dilutions. The asymmetric five-parame-
ter log-logistic model ('l5') performs best irrespective of
the threshold cycle and throughout all curves. To validate
the performance of the model selection process on a dif-
ferent platform, four independent serial dilution data sets
were considered. The datasets differed in the number of
replicates, platform and enzymatic chemistry (see Addi-
tional file 1). Significantly better fits of the five-parameter
model over the four-parameter model, as measured by
nested F-test, occurred in 16 of 24 replicates (Dataset 1),
30 of 30 (Dataset 2), 19 of 21 (Dataset 3) and 47 of 48
(Dataset 4).

The application of the model selection process is based on
the F-test significance from the fit of the complete (or the
largest part) of the amplification curve. As the PCR effi-
ciency and second derivative maximum are derived
mainly within the exponential region, it was necessary to
evaluate the performance of the five-parameter model
with a measure for the goodness-of-fit solely within this

Effect of different f-parameter values on a fitted qPCR curve.Figure 1
Effect of different f-parameter values on a fitted qPCR curve. A five parameter log-logistic model was fitted on the 
real-time PCR curve of the S27a transcript (black line, fit; black circles, experimental measurements). The effect of varying the 
f-parameter between 1.0 and 5.0 while keeping the other parameters constant is displayed as coloured curves. Altering the f-
parameter also influences other parameters of the fit, mainly 'b' (the slope) and 'e' (the inflection point), although the latter is in 
a five parameter model different from the classical definition (see Discussion).
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important part of the amplification curve. We identified
the exponential region by two different methods: (i) the
studentized residuals method as described in [9] and (ii)
by fitting an exponential model with a window of seven
points along the complete amplification curve and identi-
fying the region with the smallest residual variance of the
fit. The outcome from both methods was nearly always
identical.

The performance of the 'l5' model in comparison to the
'l4' model and the exponential model is shown in Figure
5 (upper panel). The best fit is exhibited by the exponen-
tial model, while the five-parameter log-logistic model
clearly outperforms its four-parameter counterpart. To
confirm this observation, we calculated the residual value
(i.e. observed value minus fitted value) for each of the
seven points within the exponential phase for 24 different
PCR runs in different dilutions (Figure 5, lower panel).
Corroborating the findings above, the exponential fit has
the best performance (and least variation), followed by
the five-parameter model. By focussing only on the good-
ness of fit within the exponential region of the qPCR data,

increased performance for the five-parameter model over
its four-parameter counterpart was observed in 9 of 24
cases (Dataset 1), 30 of 30 (Dataset 2), 21 of 21 (Dataset
3) and 47 of 48 (Dataset 4). Interestingly, for some repli-
cates of Dataset 3 & 4 the five-parameter model outper-
formed even the exponential model in respect to the root-
mean-squared-error (12/21 and 21/48, respectively).

Estimation of essential qPCR parameters from the five-
parameter model compared to previously established 
quantification models
For relative quantification of qPCR data, the estimates of
the PCR efficiency have to be combined with the results
from the threshold cycle analysis. Thus, it was necessary to
derive the five-parameter equivalent of the threshold
cycle, which is implemented in the qpcR package as the
second derivative maximum (cpD2). The efficiency is
then estimated at this point (see Equation 8). The calcula-
tion of the parameters follow the model selection step,
such that they are based on the best performing sigmoidal
model.

Scenario A: qPCR curves with different threshold cycles can have similar f-values.Figure 2
Scenario A: qPCR curves with different threshold cycles can have similar f-values. PCR amplification of the tran-
script of the tumor necrosis factor (TNF) was conducted on 15 different RNA samples obtained from human testicular tissue. 
The threshold cycles varied within a range of 3 cycles (24.2 to 26.8). The inset shows the boxplot of the f-values from 15 differ-
ent amplification curves.

15 20 25 30 35

0

2

4

6

8

10

12

14

Cycles

R
aw

flu
or

es
ce

nc
e

0.80

0.82

0.84

0.86

0.88

0.837 ± 0.024 (2.9%)

f-v
al

ue
Page 4 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:221 http://www.biomedcentral.com/1471-2105/9/221
The estimation of the second derivative maximum was
found to be more reproducible with the five-parameter
model in two of four datasets (Dataset 2 and 3). In respect
to the PCR efficiency, Datasets 1–3 showed a higher repro-
ducibility with the five-parameter method that was also
prominent within the efficiency estimates obtained from
other methods (Figure 6). The calibration curve method
has the highest reproducibility, which underlines its status
of being the 'gold standard' but the reproducibility of effi-
ciency estimates based on the five-parameter model
comes close. An additional observation is that within the
different serial dilution steps, the efficiency estimates are
spread more evenly around a fixed value, i.e. the variation
of efficiency values within a dilution regime is much
smaller.

Accuracy and precision of ratio estimates obtained from 
Δct methods and initial template fluorescence (F0)
In general, two methods exist for relative quantification of
qPCR data. Ratios based on threshold cycles and effi-
ciency estimates are most commonly applied when using

single curve methods such as the four-parameter model,
the exponential model and the 'window-of linearity'
method. Furthermore, these methods can estimate the ini-
tial template fluorescence at the beginning of the curve,
often termed F0. Although it has been repeatedly claimed
that a fair estimate of F0 can be obtained by setting x = 0
in the sigmoidal function [10,17], we failed in getting
reproducible data from this approach with all datasets
(not shown). Instead, we calculated F0 by using an expo-
nential model with the parameters estimated from the
five-parameter fit (Equation 9). We evaluated the four
dilution datasets using the Δct and F0 values for the five
methods, where applicable, and calculated the accuracy
and precision of the estimated dilution ratios (Table 1).

The performance of using the Δct method with efficiency
and threshold cycles estimated from the five-parameter
model is increased in three datasets but is found within
different methods. In contrast to this observation, ratios
estimated by initial fluorescence from the five-parameter

Scenario B: qPCR curves with similar threshold cycles can have different f-values.Figure 3
Scenario B: qPCR curves with similar threshold cycles can have different f-values. PCR amplification of the S27a 
transcript on the same RNA in two different duplicates, with the second duplicate set (blue and green line) obtained with only 
70% of the polymerase concentration as in the first set (red and black line). The threshold cycle obtained from the second 
derivative maximum method was within 13.6 ± 0.3 cycles. Both insets depict the parameter estimates for 'f' and 'e' for the fit-
ted curves, showing that these two parameters are highly correlated. Black circles indicate experimental measurements.
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sigmoidal fit (sigm/F0/5-par) presented higher accuracy
and precision throughout all datasets.

Discussion and Conclusion
By fitting four-parameter sigmoidal models onto many
datasets, we observed that the fitted curves were often not
optimal at the ground asymptote, top asymptote ('plateau
phase') and even more important at the log-linear region
that is used for the estimation of PCR efficiencies or
threshold cycles. As an asymmetrical structure of the data
would be a proper explanation for this phenomenon, we
analyzed the performance of fitting five-parameter mod-
els onto qPCR data.

The fifth parameter (termed 'f' in this work) has profound
impact on the sigmoidal curvature of the fit. When equal
to 1, the five-parameter fit is reduced to its four-parameter
equivalent. We rarely observed values very near to 1 after
non-linear fitting. This is the reason why we emphasize
the use of the five-parameter models, since asymmetry of
qPCR data seems to be an inherent characteristic and

absolutely symmetric qPCR data seldom (in our observa-
tions never) occur. As shown on different qPCR scenarios,
the asymmetry parameter is unique to every curve and due
to its interaction with other parameters of the fit (mostly
'e', the inflection point and 'b', the slope) the results of the
fit are often similar but not directly comparable to four-
parameter models.

To base our new proposed model on solid statistical
ground, we conducted a nested F-test of the new five-
parameter models versus the four-parameter versions in
order to validate the increased performance. This is com-
mon practice for selecting the best model in non-linear fit-
ting regimes [18] and delivers the essential p-value for
choosing the fit with the smallest residual variance. Statis-
tical significance in the region of p = 10-3 to p = 10-16 of
five-parameter logistic or log-logistic models over their
four-parameter counterparts were seen in almost all qPCR
curves we examined. The log-logistic model 'l5' has the
highest occurrence within the model selection, but we
also observed fits with the logistic 'b5' model performing

Model selection of logistic fits on a qPCR dilution experiment.Figure 4
Model selection of logistic fits on a qPCR dilution experiment. Three-, four- and five-parameter logistic ('b3'-'b5') and 
log-logistic ('l3'-'l5') models were fit onto the average of quadruplicate S27a amplification curves of a 10-fold dilution experi-
ment. The best models among the logistic models and log-logistic models were selected by nested F-tests using the residual 
variance as the criterion and are displayed in black letters near the curves. Coloured circles indicate experimental measure-
ments.
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best, especially when the raw fluorescence data has low
values. We believe that the advantage of the log-logistic
model over the logistic model is in a reduced effect of the
plateau cycles on the fit as a consequence of the logarith-
mized x-values (cycle numbers).

By using the RMSE and statistics based on the residual val-
ues, it could be shown that the five-parameter models
clearly outperform their four-parameter counterparts in
fitting the model solely to the exponential region. In most

of the cases the performance of the exponential fit, which
exhibited very low RMSE values and highly accurate fitting
characteristics, was superior. This was not the observation
for the dataset from Rutledge et al. [17] and another data-
set from our group, where the five-parameter log-logistic
model surpassed the exponential model. These two data-
sets exhibit lower raw fluorescence values in general, such
that the reason for the different performances is likely to
be based on the underlying platform or enzymatic system.
The exponential model does not fit optimal on this kind

Goodness-of-fit in the exponential region of the amplification curve.Figure 5
Goodness-of-fit in the exponential region of the amplification curve. Upper panel: Zoom-in view for the goodness of 
fit in the exponential region of a qPCR curve. Three different models were fit to the exponential region of a typical qPCR curve 
which was identified by the method described in [9]: An exponential model (green), a four-parameter log-logistic model (black) 
and a five-parameter log-logistic model (red). Lower panel: Residual values for seven points within the exponential regions of 
24 qPCR data fits (six dilutions, four replicates each) for the three models. Colour coding same as above. Values are shown as 
mean + s.d.).
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of data and the fitting procedure was often problematic
and yielded unsatisfactory estimates.

The reproducibility of the efficiency estimation with the
five-parameter models was not only significantly better
than with the four-parameter models, but also often sur-
passed the reproducibility of the exponential model and
the 'window-of-linearity' method. This characteristic was
found for the same datasets with low exponential fitting
performance as described above.

In the aforementioned work from authors utilizing four-
parameter models, the feasibility of using these were cor-

roborated by using the R2-value as the figure-of-merit,
demonstrating very high values (R2>0.99). As we have
seen, the R2-value is not a sensitive measure for model
comparison: Dramatic improvement (as is often the case
when going from symmetry to asymmetry) is hardly being
reflected in the R2-value. There is considerable controversy
about the use of this measure in non-linear fitting [19].
Consequently, we would like to advocate that this meas-
ure should not be reported or trusted solely for demon-
strating the validity of a fit in sigmoidal qPCR data.

The introduction of the five-parameter model is in our
opinion another leap in the direction of automatic qPCR

Assessment of quantitative real-time PCR efficiencies from the replicates of four independent dilution datasets.Figure 6
Assessment of quantitative real-time PCR efficiencies from the replicates of four independent dilution data-
sets. Four independent datasets (in rows) were analyzed in respect to the PCR efficiencies of five different methods (in col-
umns), as follows: 4-par: a four-parametric log-logistic model; 5-par: a five-parameter log-logistic model; exp: an exponential 
model after outlier cycle detection [9]; w-o-l: the window-of-linearity method as described in [8]; calib: a calibration curve 
obtained from linear regression of all threshold cycles. The boxplots depict the statistical features of the replicates within each 
dilution step. For methods 1–4, efficiencies were calculated per curve, while for method 5 one efficiency estimation was 
obtained from all dilution steps. If estimated efficiencies were larger than 2.1, this is denoted in the graphs. The derivation of 
the efficiency from four- and five-parameter models was done with Equation 8.
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data analysis. This intention, introduced in [17] is a
project to be still reached. It is unfortunately a fact that dif-
ferent methods in qPCR analysis can yield very different
values in respect to PCR efficiency, threshold cycle or esti-
mation of the exponential phase [20,21]. Yet, when focus-
ing the attention on sigmoidal models, we believe that the
additional aspect of asymmetry is an important feature to
take into consideration, since the performance of the fit in
each part of the curve (and most importantly in the expo-
nential region) is nearly always improved by using five-
parameter models.

Methods
RNA extraction and cDNA synthesis
Total RNA was extracted from human testicular biopsies
with RNApure™ (Peqlab, Germany) and re-purified on
RNeasy™ columns (Qiagen, Germany) according to the
manufacturers' protocols. RNA purity and integrity (28S/
18S ratio) were assessed by loading aliquots of approxi-
mately 200 ng onto RNA 6000 nano assay chips using an
Agilent Bioanalyzer (Model 2100; Agilent Technologies,
Palo Alto, CA). Only samples with an RNA integrity
number higher than 7.5 (RIN, Agilent software) were
included for the PCR experiments. cDNAs were synthe-
sized with Superscript™ II reverse transcriptase (Invitro-
gen, Carlsbad, CA) according to the manufacturers'
protocol.

Quantitative real-time PCR (qRT-PCR)
qRT-PCR was performed using LightCycler™ (Roche,
Basel, Switzerland) technology using 10 pmol each gene

specific primers, 2 μl dNTP mix (25 mM each, Takara Bio,
Shiga, Japan), 0.5 μl SybrGreen I (1:1000 in DMSO;
Molecular Probes, Leiden, Netherlands), 0.25 μl BSA (20
mg/ml; Sigma, Germany) and 0.2 μl Ex-Taq HS (5 U/μl;
Takara Bio, Shiga, Japan) in a total volume of 20 μl.
Cycling conditions were 95°C 5 min, 95°C for 10 s, 60°C
10 s, 72°C for 30 s with a single fluorescence measure-
ment at the end of the segment, repeated for 50 times. A
melting curve program (60–95°C with a heating rate of
0.1°C/s and continuous fluorescence measurement) was
conducted and the PCR products were electrophoretically
separated on 1.3% agarose/TAE gels and verified by
sequence analysis.

Curve fitting
Both the curve fitting process and the data analysis were
conducted with the qpcR package, which is tailored to the
special application of real-time polymerase chain reaction
and houses several functions for fitting different curve
types to qPCR data. The fitting process and model selec-
tion is done by using functionality from the package drc
[14], which is the statistical analysis engine, while the
qpcR package extends the fitting process by deriving sev-
eral important qPCR parameters, providing optimization
procedures and graphical evaluation of the results. All raw
data used for the analysis were not processed (i.e. baseline
corrected).

We compared the most widely applied sigmoidal curve
type for qPCR analysis, the four-parameter logistic curve
(also termed Boltzmann fit) and additionally its four-

Table 1: Summary for accuracy and precision of dilution ratio quantitation obtained from four independent dilution datasets.

Set 1 Set 2 Set 3 Set 4

sigm/Δct/4-par 65.5 (36.9) 106.4 (7.0) 108.3 (16.6) 84.9 (7.6)
sigm/Δct/5-par 73.5 (21.9) 77.2 (4.5) 89.3 (4.6) 75.9 (8.3)
sigm/F0/4-par 46.6 (35.8) 79.7 (15.2) 117.3 (79.1) 68.8 (21.1)
sigm/F0/5-par 70.4 (42.4) 86.1 (17.8) 87.1 (33.6) 72.6 (48.6)
exp/Δct/4-par 85.7 (21.8) 104.2 (11.2) 318.8 (31.7) 339.5 (60.7)
exp/Δct/5-par 82.6 (21.2) 101.3 (10.2) 319.74 (29.9) 355.4 (61.3)
exp/F0 198.0 (93.1) 238.9 (92.6) 79.2 (134.0) N.V.
w-o-l/Δct/4-par 59.4 (18.2) 83.9 (5.4) 105.7 (19.5) 74.1 (20.7)
w-o-l/Δct/5-par 57.5 (18.3) 81.9 (5.0) 103.9 (14.9) 73.9 (21.8)
w-o-l/F0 53.5 (25.9) 76.3 (14.3) 310.2 (118.2) 295.8 (175.6)
calib/Δct/4-par 126.0 (21.6) 100.6 (5.8) 100.6 (11.5) 99.9 (7.7)
calib/Δct/5-par 128.6 (20.8) 97.9 (5.1) 99.3 (5.9) 99.3 (8.1)

Five commonly used quantification methods in conjunction with threshold cycles estimated from four- and five-parameter sigmoidal models were 
applied for the analysis. Four different datasets differing in the number of replicates, enzymatic chemistry and platform were analyzed in respect to 
accuracy (average percentage of calculated ratios from real ratios) and precision (average c.v.; numbers in brackets). Threshold cycles estimated 
from the second derivatives maximum of four- and five-parameter sigmoidal models (4-par, 5-par) were used in combination with the following 
methods: sigmoidal model with Δct method (sigm/Δct), exponential model with Δct method (exp/Δct), window-of-linearity method with Δct 
method (w-o-l/Δct) and calibration curve with Δct method (calib/Δct). Methods for calculation of ratios based on the initial template fluorescence 
(F0) were: four-parametric sigmoidal model (sigm/F0/4-par), five-parameter sigmoidal model (sigm/F0/5-par), exponential model (exp/F0) and the 
'window-of-linearity' method (w-o-l/F0).
Numbers in bold are combinations in which the five-parameter model performs best. N.V. : no realistic estimation values due to problematic fits.
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parameter log-logistic counterpart to five-parameter ver-
sions that were shown to exhibit better fits for asymmetric
data [15].

The applied four- and five-parameter sigmoidal curves are
related by the following equation (x is the cycle number):

The parameters b, c, d and e correspond to the slope,
ground asymptote, maximum asymptote and the inflec-
tion point, respectively. The parameter f is the additional
asymmetry parameter. Setting parameter f = 1 yields the
four-parameter curves previously described. The parame-
ters of the four- and five-parameter fits are estimated by
method of non-linear least squares which seeks to find the
parameters that minimize the residual sum-of-squares (y
is the raw fluorescence measurement):

with respect to the parameters (b, c, d, e) and also f in case
of the five-parameter models. This procedure is in princi-
ple feasible with any data analysis software that is capable
of fitting non-linear regression models, but is much more
conveniently accessible through built-in models (such
that the user need not provide initial values ("guesses") of
the parameter values). The four-parameter models are
commonly available in various data analysis software.
Tools exclusively for the five parameter models are not
generally available, two exceptions being the StatLIA soft-
ware (Brendan Technologies) and the five-parameter log-
logistic Richards model found in GraphPad Prism version
5.0 (Graphpad Software Inc...).

Choosing the best model by nested F-tests
Finally, after fitting the different sigmoidal models to the
data, a model selection process is conducted to find the
model that exhibits a best fit in respect to the sum-of-
squares. One approach, which is only valid when the
models are nested (i.e. an additional parameter on the
same basic formula is applied) is to use an F-test, often
called an extra-sum-of-squares test. The F-test quantifies
the relative decrease in sum-of-squares when going from a
simpler model to a more general model:

with rss = residual sum-of-squares =  (yi = the

actual y value,  = the fitted value), df = degrees of free-

dom, 4pl = four-parameter fit and 5pl = five-parameter fit.
The p-value obtained from an F-distribution then evalu-
ates the chance that -if the experiment were repeated- one
randomly obtains data that would yield an even larger rel-
ative decrease than observed for the actual data.

Evaluating the different measures of goodness-of-fit for 
sigmoidal models
The qpcR package can also employ the Akaike Information
Criterion (AIC) as an additional figure-of-merit which is
applicable for comparing different models that are not
necessarily nested [16]. Increasing the number of parame-
ters to be estimated always improves the goodness of the
fit, but at the cost of increased uncertainty as more param-
eters are estimated with a constant amount of information
(the same data). The AIC rewards the improvement in the
fit, but to reflect the increased uncertainty AIC also
includes a penalty that is an increasing function of the
number of parameters:

with rss = residual sum-of-squares, k = number of param-
eters (i.e. k = 5 in a five-parameter model) and n = number
of observations. The preferred model is the one with the
lowest AIC value. A related measure of the quality of a
model fit is the residual variance which is defined as:

with rss, n and k as previously defined.

An often used measure for the goodness-of-fit is the
regression coefficient, R2:

with rss = residual sum-of-squares and tss = total sum-of-

squares =  (where  is the average of the y val-

ues). This measure has been used to demonstrate the
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validity and goodness of four-parameter sigmoidal mod-
els in the analysis of real-time PCR data [10,11,17].

Deriving essential PCR parameters from the five-
parameter models
For the quantification of real-time PCR experiments, the
two parameters 'PCR efficiency' and 'threshold cycle' (also
referred to as 'crossing point') are essential in the calcula-
tion of relative differences of DNA abundance. Within the
qpcR package, the efficiency can be calculated along any
point of the sigmoidal fit, but is taken at default at the sec-
ond-derivative maximum. In most of the cases, this point
lies within the exponential region of the curve. Thus, by
defining Eff = F(x)/F(x-1), follows

with F = raw fluorescence at cycle x, and cpD2 = cycle
number at second derivative maximum of the curve.

The calculation of the initial template fluorescence F0 for
the exponential model and the 'window-of-linearity'
method has been published elsewhere [11,8]. For sigmoi-
dal models, two methods for estimation of F0 exist: Cal-
culation of F0 by setting x = 0 in the sigmoidal function
(Equations 1 & 2) or by extrapolating an exponential
model using the parameters estimated from the (four- or
five-parameter) sigmoidal fit:

with F(cpD2) = raw fluorescence at second derivative
maximum cycle number, EffcpD2 = efficiency at second
derivative maximum as calculated by Equation 8 and
cpD2 = second derivative maximum cycle number.

Estimates for the PCR efficiency, the maxima of the first
and the second derivatives and the initial template fluo-
rescence based on the five-parameter sigmoidal fits are
derived within the qpcR package and were used for calcu-
lations of four independent dilution datasets.

Comparison of the new model to previously established 
models
We compared the five-parameter models with previously
established models such as the four-parameter sigmoidal
model [10], the window-of-linearity method [8], expo-
nential fitting after identification of outlier cycles by stu-
dentized residuals [9] and from the slope of a calibration
curve [5]. Reproducibility for all essential parameters of
each method were calculated from replicate experiments
of four independent dilution datasets that differ in the
number of replicates, platform and enzymatic chemistry

(see Additional file 1). To evaluate the performance of
these methods in respect to accuracy, we calculated the
average percentage of the estimated dilution ratios com-
pared to the technical dilution ratios:

As the most important information for comparison of the
non-linear models is the performance of the fit in the
exponential region of the amplification curve, we ana-
lysed the goodness-of-fit in this region by the commonly
used root-mean-squared-error (RMSE):

with res (residual) = actual value – predicted value (fit)
and n = number of points. One can compare different
models by absolute comparison of the RMSE values for
the different models: the smaller the RMSE the better the
model fit.
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Additional file 1
Statistical summary of four independent dilution datasets and five 
commonly used quantification methods based on threshold cycles and 
initial template fluorescence as estimated from four- and five-param-
eter sigmoidal models. Four different dilution datasets differing in the 
number of replicates, enzymatic chemistry and platform were analyzed in 
respect to efficiency, measures for the goodness of fit (RMSE, AIC, R-
squared; see Methods), threshold cycles estimated from four- and five-
parameter sigmoidal models and calculated ratios obtained either by Δct 
methods or by estimation of the initial template fluorescence (F0). In 
total, five different methods as described in the file under 'Details' were 
used for the statistical comparison (see also Legend to Table 1). In cases 
of increased performance of the five-parameter models over the four-
parameter models, the statistical values were highlighted in yellow. Micro-
soft Excel spreadsheet.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-221-S1.xls]

Accuracy %[ ] = mean of estimated dilution ratios
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