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Aleš Tichopáda,b, Ladislav Pecena, Michael W. Pfafflb,∗

a IMFORM GmBH, International Clinical Research, Darmstadt, Germany
b Lehrstuhl für Physiologie, Fakultät Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising-Weihenstephan,
Germany

a r t i c l e i n f o

Article history:

Received 12 July 2005

Received in revised form 4 October

a b s t r a c t

Cluster analysis is a tool often employed in the micro-array techniques but used less in

the real-time PCR. Herein we present core SAS code that instead of the Euclidian distances
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takes correlation coefficient as a dissimilarity measure. The dissimilarity measure is made

robust using a rank–order correlation coefficient rather than a parametric one. There is no

need for an overall probability adjustment like in scoring methods based on repeated pair-

wise comparisons. The rank–order correlation matrix gives a good base for the clustering

procedure of gene expression data obtained by real-time RT-PCR as it disregards the different

expression levels. Associated with each cluster is a linear combination of the variables in the

cluster, which is the first principal component. Large set of variables can then be replaced

by the set of cluster components with little loss of information. In this way, distinct clusters

containing unregulated housekeeping genes along with other steadily expressed genes can

be disclosed and utilized for standardization purposes. Simulated data in parallel with the

data from a biological experiment were taken to validate the SAS macro. For both cases,

good intuitive results were obtained.

© 2006 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Quantitative real-time polymerase chain reaction (PCR) is a
powerful method for reliable quantification of low-abundance
mRNA in biological samples. The mRNA must be reverse
transcribed into DNA as the enzyme used in PCR reaction
is restricted to DNA only. Real-time PCR is based on enzy-
matic amplification of selected initial DNA sequence up to
a detectable amount by repeated temperature changes. The
entire development of the DNA amount in sample is closely
monitored by fluorescence signal emission at the end of every
cycle. Since the strength of the fluorescence signal emitted is
proportional to the DNA amount produced, it facilitates visual-
isation of the reaction trajectory and produces so called ampli-
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fication curve. Initial concentration of DNA in sample can be
then estimated from the calculated number of cycles required
to attain chosen signal strength or some strictly defined point
on the amplification curve. This number called crossing point
(CP) or threshold cycle (Ct) is the fundamental quantity obtained
for each sample from the real-time PCR assay.

Since the CP reflects only an unknown amount of initial
sequence, useful quantitative information cannot be obtained
unless at least two samples are analysed. If at least two
unknown samples are quantified, the difference between
them can be obtained from the difference between their CPs
and the amplification mode. In this way, effect of experimental
treatment on up- or down-regulation of gene expression can
be studied without the need for absolute quantities known.

0169-2607/$ – see front matter © 2006 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2005.12.002
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This is a principal of the so called relative quantification
approach.

To make sure that the entire quantification assay proceeds
in a similar way in all compared samples, amplification of
another sequence assumed unregulated under applied study
treatment is introduced into the assay. The search for such
reference genes unregulated under treatment is therefore an
essential task before any relative gene expression quantifica-
tion is conducted. The reference gene is assumed to remain
constant under applied treatment, and any shift in its amount
observed between compared samples can be thus associated
to assay disturbances. The same shift can be then expected
to affect the results of the studied gene and can be subtracted
from it. Computing method based on this principle was pro-
posed [1] that incorporates a reference gene into calculation
of expression ratio of studied gene in two compared samples.

There is a good reason and even bigger wish to believe, that
so called housekeeping genes remain constantly expressed
and provide thus a good references. Unfortunately, papers
reporting about regulation of these genes are published too
often to admit of this assumption (e.g., [2,3]). Physiological
changes in untreated organisms can alone cause regulation of
these genes [4]. Vandesompele et al. [5] proposed computing
method based on the standard deviation that sorts candidates
according to their best pair-wise score to other genes. This
method, however, does not reflect the target genes and their
relation to the reference genes. Repeated pair-wise analysis
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number of cluster components does not generally explain as
much variance as the same number of principal components
on the full set of variables, but the cluster components are
usually easier to interpret than the principal components. The
first principal component is a weighted average of the vari-
ables that explains as much variance as possible.

The purpose of looking for principal components [8,9] is to
derive a small number of linear combinations (principal com-
ponents) of a set of variables that retain as much of the infor-
mation in the original variables as possible. Often a small
number of principal components can be used in place of the
original variables for plotting, regression, clustering, and so
on. Principal component analysis can also be viewed as an
attempt to uncover approximate linear dependencies among
variables.

The first j principal components provide a least-squares
solution to the model

Y = XB + E (2)

where Y is an n × p matrix (with n columns and p rows) of the
centered observed variables; X the n × j matrix of scores on the
first j principal components; B the j × p matrix of eigenvectors;
E the n × p matrix of residuals; and the trace (E′E), the sum of all
the squared elements in E, is to be minimized. In other words,
the first j principal components are the best linear predictors
of the original variables among all possible sets of j variables,
n more than two genes [6] is confronted with the need for an
djustment of the overall probability value. The Excel tool by
faffl et al. [6] also utilises the Pearson correlation coefficient
s a similarity measure, assuming thus normal distribution
long the data. This is however only seldom the case. Herein
resented method is proposed with the aim to up-grade the
ool presented by Pfaffl et al. [6].

. Background

ome simple approach omitting the imaginary boundary
etween unregulated housekeeping genes and regulated
enes is desired, that would group genes based on a
obust distribution-insensitive dissimilarity measure. Spear-

an rank–order correlation coefficient is a non-parametric
easure of association based on the rank of the data values.

he formula is

=
∑

(Ri − R)(Si − S)√∑
(Ri − R)

2 ∑
(Si − S)

2
(1)

here Ri is the rank of the ith x value, Si the rank of the ith y
alue, R the mean of the Ri values and S is the mean of the Si

alues.
Clustering procedure based on the Spearman correlation

oefficient prevents erroneous results due to non-normal dis-
ributed real-time PCR data [7]. In the here proposed method,
ssociated with each cluster is a linear combination of the
ariables in the cluster, which is the first principal compo-
ent. A large set of variables can often be replaced by the set
f cluster components with little loss of information. A given
although any nonsingular linear transformation of the first j
principal components would provide equally good prediction.

3. Test data

3.1. Simulated data set

Data with five variables of n = 11 observations was simulated
based on a real biological variable by introducing noise into
four linearly associated variables. This data should facilitate a
better intuitive understanding of the logic behind the dissim-
ilarity measure applied for clustering. The first variable called
RG contains 11 CP observations for ubiquitin with the arith-
metic mean �RG and standard deviation �2

RG.

RG ∼ U(�RG, �2
RG) (3)

Since n = 11 only, no strong departure from normal distribu-
tion was found. Subsequently, three semi-random simulated
variables SRD1, SRD2 and SRD3 were derived from RG as
follows:

SRD1 = RG + �1 �1 ∼ N(��1 = 0, �1
�1

= 1)

SRD2 = 1.3 ∗ RG + �2 �2 ∼ N(��2 = 0, �1
�2

= 0.1)

SRD3 = �3 ∗ RG �3 ∼ N(��3 = 1.3, �1
�3

= 0.03)

(4)

where RG is the real gene’s CP and �1, �2 denote random noise
generated from the normal distribution with respective mean
� and standard deviation �2. These three variables were sup-
posed to simulate different genes with the same expression
pattern as the RG but more or less affected by sample specific
disturbances. The �1 and �2 introduce some additive distur-
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Table 1 – Descriptive statistics on the simulated data
(n = 11)

Variable Mean Variance S.D.

RG 20.44 0.38 0.61
SRD1 20.86 1.60 1.27
SRD2 26.57 0.64 0.80
SRD3 26.70 1.70 1.32
RD 20.71 1.71 0.08

bance into, otherwise perfect, correlations between SRD1 and
RG, and SRD2 and RG. The SRD1 and SRD2 differ one from
another not only by their multiplicative factor but also by the
standard deviation of their added noise component �2

�1
, �2

�2
. As

the noise is greater in SRD1 then in SRD2, which is given by its
�2

�1
> �2

�2
, it is supposed, that RG should be more tightly corre-

lated with SRD2 in most of the simulation runs. As no multi-
plication of RD is introduced into SRD1, it has the same central
tendency as RG and from the Euclidian perspective is thus
closer to RG than the SRD2 with its multiplicative factor 1.3.

The SRD3 is also derived from the RG, however the noise is
introduced as a multiplicative rather than additive factor here.
The noise has the same mean value 1.3 as the multiplicative
factor in SRD2, and small standard deviation 0.03. The aim of
introducing SRD3 is to simulate a gene regulation dependant
on a baseline value, common phenomenon in biological regu-
lation. In other words, expression change due to treatment is
not only dependant on the treatment strength but also on the
baseline expression value before the treatment was applied.

The fifth simulated variable RD has no linear association
with RG as it is drown from the normal distribution with
the same mean and standard deviation as the RG, therefore
RD ∼ N(�RG, �2

RG). It is expected that in most simulations this
variable should not be associated with the RG however, from
Euclidian perspective, both variables are close. Descriptive
statistics for the simulated data are shown in Table 1.

Table 2 – Descriptive statistics on the biological data
(n = 31)

Variable Mean Variance S.D.

UBQ 20.86 1.05 1.03
GAPD 21.50 1.05 1.02
�-Actin 18.29 1.04 1.02
S18 12.97 3.66 1.91
IGF-1 29.31 1.00 1.00
IGF-2 23.14 1.17 1.08
IGF-1R 24.59 1.122 1.06
IGF-2R 37.89 0.70 0.84
BP-1 29.38 9.10 3.02
BP-2 30.53 1.042 1.02
BP-3 30.00 3.39 1.84
BP-4 31.13 2.18 1.48
BP-5 26.74 2.24 1.50
BP-6 30.36 2.12 1.46

whose expression is studied. In each biological sample, all 14
factors were quantified. The CP as used here is a fractional
numbers of PCR cycles necessary to reach a strictly given
point of the amplification curve geometry. Here, the maxi-
mum of the second derivative of the amplification curve [12]
was used as computed by the LightCycler Software 3.5 (Roche
Diagnostics). Descriptive statistics for this data are shown in
Table 2.

4. System description

The SAS macro CLUSTER presented here (Table 3) is the min-
imal source that performs the fundamental computing. Data
genes entered by the DATA step is a reduced example of the
original biological dataset. The macro consists of following
SAS/BASE and SAS/STAT procedures.

The CORR procedure is a statistical procedure that creates
correlation matrix with the Spearman correlation coefficients.
The correlation matrix is then saved as an output data set cor.

The VARCLUS procedure uses the recently created cor data
set and omits observations with missing values from the anal-
ysis. The MAXCLUSTERS= option specifies the largest number
of clusters desired. This can be determined in the macro invo-
cation as &clusno parameter.

The VARCLUS procedure tries to maximize the sum across
clusters of the variance of the original variables that is
3.2. Biological data set

The same biological data as used in Pfaffl et al. [6] were used
here also to show that similar results can be obtained with
herein presented method, assuring however better adherence
to a good statistical practice. Complete RNA from 31 bovine
corpora lutea samples was extracted by method of Chomczyn-
ski [10] from small slices of deep frozen CL with peqGOLD
according to the manufacturer’s instruction.

The cDNA was reverse-transcribed from 1000 ng total RNA
with 200 units of M-MLV Reverse Transcriptase (Promega
Corp., Madison, USA) according to the manufacturer instruc-
tions.

The CP data related to expression levels [12] of studied
factors were obtained on LightCycler (Roche, Basel, Switzer-
land) PCR instrument [11,12]. In the 31 cDNA samples,
expression of four genes with assumed stable expression –
housekeeping genes (HKG); ubiquitin (UBQ), glyceraldehyde-
3-phosphate dehydrogenase (GAPD), �-actin and 18S ribo-
somal unit were quantified together with 10 studied target
genes; IGF-1 (insulin-like growth factors type 1), IGF-2, IGFR-
1 (insulin-like growth factor receptor type 1), IGFR-2, IGFBP-
1 (insulin-like growth factor binding protein type 1) – IGF-6,
explained by the cluster components. The set of analysed
genes is divided into non-overlapping clusters in so that each
cluster can be interpreted as essentially unidimensional. For
each cluster, PROC VARCLUS computes a component that is
the first principal component and tries to maximize the sum
across clusters of the variation accounted for by the clus-
ter components. PROC VARCLUS is a type of oblique compo-
nent analysis related to multiple group factor analysis [13]. By
default, PROC VARCLUS begins with all genes in a single clus-
ter. It then repeats the following steps:

(1) A cluster is chosen for splitting.
(2) The chosen cluster is split into two clusters by finding the

first two principal components, performing an orthoblique
rotation (raw quartimax rotation on the eigenvectors), and
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Table 3 – The SAS macro CLUSTER

*Program source of the macro CLUSTER;

%macro CLUSTER (var=, clus=);

PROC CORR outs = cor;

var &VAR;

PROC VARCLUS data = cor outtree = tree

%if &clus. ne %str() %then

%do; maxclusters = &clus; %end;

;

var &VAR;

axis2 minor = none;

axis1 label = (‘Proportion of Variation Explained’)

minor = none;

PROC TREE horizontal vaxis = axis2 haxis = axis1

lines = (width = 2);

height propor ;

run;

%mend cluster;

*Entry of CP data into SAS by data step;

DATA genes;

input UBQ GAPD Betaactin S18 IGF1;

cards;

20.59 21.06 17.80 10.00 28.49

21.17 20.84 18.14 12.92 29.05

20.67 20.09 17.84 9.87 29.69

20.99 20.78 18.30 10.15 28.74

19.77 19.65 16.71 11.66 29.03

19.91 21.33 17.22 10.37 27.59

20.75 21.74 17.58 10.05 28.97

21.08 21.25 17.16 13.03 28.51

19.22 21.24 17.44 12.58 28.87

;

run;

*Call of the Macro;

%CLUSTER (var = UBQ GAPD Betaactin S18 IGF1, clus=);

Minimal SAS macro compiler source necessary for performing the
described computation. The macro call bellow enables definition
of analysed variables as well as optional definition of number of
cluster produced.

assigning each gene to the rotated component with which
it has the higher squared correlation.

(3) Genes are iteratively reassigned to clusters to maximize
the variance accounted for by the cluster components. The
reassignment may be required to maintain a hierarchical
structure.

If the MAXCLUSTERS is not defined, by default PROC VAR-
CLUS stops splitting when each cluster has only a single eigen-
value greater than 1, thus satisfying the most popular criterion
for determining the sufficiency of a single underlying factor
dimension Kaiser [14]. The iterative reassignment of genes to
clusters proceeds in two phases. The first is a nearest compo-
nent sorting (NCS) phase, similar in principle to the nearest
centroid sorting algorithms described by Anderberg [15]. In
each iteration, the cluster components are computed, and
each variable is assigned to the component with which it has
the highest squared correlation. The second phase involves a
search algorithm in which each gene is tested to see if assign-
ing it to a different cluster increases the amount of variance
explained. If a gene is reassigned during the search phase,
the components of the two clusters involved are recomputed
before the next gene is tested. The NCS phase is much faster

Table 4 – Cluster listing for six clusters computed on the
biological data

Cluster Variable R-squared with 1 − R2 ratio

Own
Cluster

Next
Closest

Cluster 1 UBQ 0.6362 0.3323 0.5448
Betaactin 0.7239 0.3441 0.4210
IGF-2 0.7547 0.5038 0.4944
BP-4 0.8092 0.7010 0.6381

Cluster 2 BP-2 0.7111 0.0226 0.2956
BP-6 0.7111 0.1439 0.3374

Cluster 3 IGF-2R 0.6429 0.0174 0.3635
BP-5 0.6429 0.1200 0.4059

Cluster 4 IGF-1 1.0000 0.0921 0.0000

Cluster 5 BP-1 1.0000 0.0225 0.0000

Cluster 6 GAPD 0.6846 0.6351 0.8645
S18 0.6217 0.4628 0.7043
IGF-1R 0.7732 0.3552 0.3517
BP-3 0.7960 0.4084 0.3449

To each cluster, the R2-value of each variable with its own cluster
and the R2-value with its closest cluster are displayed. The R2-value
for a variable with the closest cluster should be low if the clusters are
well separated. The last column displays the ratio of (1 − R2

own)/(1 −
R2

closest) for each variable. Small values of this ratio indicate good
clustering.

than the search phase but is more likely to be trapped by a
local optimum.

The OUTTREE= option creates an output data set to con-
tain information on the tree structure that can be used by the
TREE procedure to print a tree diagram. PROC VARCLUS dis-
plays a cluster summary and a cluster listing (Table 4). The
cluster summary gives the number of variables in each clus-
ter and the variation explained by the cluster component. The
proportion of variance explained is obtained by dividing the
variance explained by the total variance of variables in the
cluster. If the cluster contains two or more genes the second
largest eigenvalue of the cluster is also printed. The cluster
listing gives the genes in each cluster. Two squared correla-
tions are calculated for each cluster. The column labeled “Own
Cluster” gives the squared correlation of the variable with its
own cluster component. This value should be higher than the
squared correlation with any other cluster unless an iteration
limit has been exceeded. The larger the squared correlation
is, the better. The column labeled “Next Closest” contains the
next highest squared correlation of the gene with a cluster
component. This value is low if the clusters are well sepa-
rated. The column headed “1 − R2 ratio” gives the ratio of one
minus the “Own Cluster” R2 to one minus the “Next Closest”
R2. A small “1 − R2 ratio” indicates a good clustering.

The TREE procedure produces a horizontally oriented tree
diagram, using the data set created by the VARCLUS procedure.
The AXIS statements create AXIS definitions that specify the

characteristics of an axis. From left to right in the diagram,
objects and clusters are progressively joined until a single,
all-encompassing cluster is formed at the right (or root) of
the diagram. Clusters exist at each level of the diagram, and
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Fig. 1 – Plot of the simulated data vectors. Selected first
simulation run.

every vertical line connects leaves and branches into progres-
sively larger clusters (Figs. 2 and 3). The macro is terminated
by the %mend cluster. Invocation of the macro consists of
the %cluster sentence and the definitions of the three macro
parameters for the names of genes analyzed (var) and num-
ber of clusters (clus). If definition of the clus is omitted and
thus the %if condition in the program code fulfilled the default
setting for number of clusters as described above will be
activated.

5. Status report

5.1. Results from the simulated data

Twenty simulations were run producing more or less associ-
ated variables (Fig. 1). In most simulation the RG was closely
associated with SRD2 followed by SRD3, whereas the RG was
only weekly associated with SRD1 (Fig. 2). As expected, in only
one simulation runs there was a significant (p < 0.05) corre-
lation between RG and RD, regardless of the same central
tendency and spread of observations. Changing the multipli-
cation factors of SRD1 and SRD2 as well as the ��3 in SRD3

had no effect, showing that the method can associate genes

Fig. 3 – Cluster analysis with six clusters computed on the
biological data.

with different expression levels but with the same patterns.
The closest association was found between the RG and the
SRD2 as long as �2

�1
> �2

�2
. The SRD3 was also tightly associ-

ated with the RG, regardless of the noisy multiplication factor
�3. This noise caused the pattern of SRD3 to be less parallel
to RG then the pattern of SRD2, although �2

�3
< �2

�2
, and thus

less associated with it. Such effects are however cushioned
by performing the clustering on rank values and not on the
parametric data. Therefore, the SRD3 is still claimed strongly
associated with RD here (Fig. 2).

In repeated simulation runs, slightly different results were
obtained as the random values were newly generated, never-
theless, the hierarchy of the diagram remained unchanged as
long as no extreme noise was added.

5.2. Results from the biological data

Taking a look at the diagram, some six discrete clusters, as
listed in the first column of Table 4, come to the four (Fig. 3).
By default, PROC VARCLUS stops when each cluster had only a
single eigenvalue greater than 1, creating six clusters. Clusters
1 and 6 show a great explaining power and both always contain
two housekeeping genes each. There are two ways how to deal
with this result:

Cluster 1 considered as the best separated, will be taken with
all four components for standardisation purposes.
Fig. 2 – Cluster diagram on the simulated data. Similar
diagrams were obtained in 14 of the 20 simulation runs.
Cluster 6 can also still be considered well separated and use-
ful for the standardisation purposes. Both the cluster 1 and
the cluster 2 contain some known ‘conservative’ housekeep-
ing genes.

Further, some deeper insight into the regulation patterns of
the target genes can be gained from Fig. 3. Surely, there is no
association between the above proposed standards and IGF-
2R, BP-5, BP-1, BP-2, BP-6 and IGF-1. These target genes can be
well standardised using the genes from clusters 1 and 6.

Here, it is important to realise that the clustering procedure
cannot give a clear answer as to what genes are absolutely
suited for the standardisation and what not. This is due to fact
that the border between still regulated and not regulated at all
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genes need not necessarily respect the apriority definition of
“conservative” housekeeping genes.

6. Lessons learned

Clustering approaches have been frequently adopted on
micro-array data to disclose families of co-regulated genes
[16–18]. Similar pattern of expression indicates either co-
regulated genes ore genes those remain untouched by the
experiment. This similarity is given by the stabile expression
ratio between any two of the genes. Provided that sampling,
extraction procedure, RT reaction, storage and the PCR were
affected by erroneous factors, all genes achieve some common
artificial shift. This shift then produces more visible pattern in
genes that are not biologically regulated because any biologi-
cal regulation would otherwise mask it.

The success of a cluster analysis depends on how well its
underlying model describes the patterns of expression. Based
on the above idea, the herein suggested method associates
genes based on similar rank–order correlation patterns as
given by the correlation matrix. Genes with different expres-
sion levels but correlating well due to steady expression ratio
are clustered together. The Euclidean distances cannot be
taken as a measure of dissimilarities here because the levels
of expression can be different. Such method would associate
genes with close CPs instead of genes with constant expres-
s
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keeping genes can be included in the index. The standardisa-
tion model for relative quantification of change in expression
was described by Pfaffl [1] and Excel based spreadsheet is also
available Pfaffl et al. [19].

The presented SAS macro performs the simplest mostly
default computing procedures. With some knowledge of SAS,
it can be modified to perform with different settings or to pro-
duce more detailed output.
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