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The EGFR-driven cell-cycle pathway has been extensively studied due to its pivotal role in breast
cancer proliferation and pathogenesis. Although several studies reported regulation of individual
pathway components by microRNAs (miRNAs), little is known about how miRNAs coordinate the
EGFR protein network on a global miRNA (miRNome) level. Here, we combined a large-scale miRNA
screening approach with a high-throughput proteomic readout and network-based data analysis to
identify which miRNAs are involved, and to uncover potential regulatory patterns. Our results
indicated that the regulation of proteins by miRNAs is dominated by the nucleotide matching
mechanism between seed sequences of the miRNAs and 30-UTR of target genes. Furthermore, the
novel network-analysis methodology we developed implied the existence of consistent intrinsic
regulatory patterns where miRNAs simultaneously co-regulate several proteins acting in the same
functional module. Finally, our approach led us to identify and validate three miRNAs (miR-124,
miR-147 and miR-193a-3p) as novel tumor suppressors that co-target EGFR-driven cell-cycle
network proteins and inhibit cell-cycle progression and proliferation in breast cancer.
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Introduction

Signaling pathways are prime candidates for regulation by
microRNAs (miRNAs) due to their dose-sensitive nature and
the fine-tuning role of miRNAs (Inui et al, 2010). Indeed, EGFR
signaling and cell-cycle components are known to be
regulated by miRNAs in the cancer context (Bueno et al,
2008; Barker et al, 2010). EGFR itself is regulated by miR-7,
which can induce cell-cycle arrest and cell death in cancer cell
lines (Webster et al, 2009). In addition, let-7 regulates the
oncogene Ras, which is the activator of the MAPK pathway
upon EGFR activation (Johnson et al, 2005). Similarly, several
cell-cycle genes have been identified as direct targets of
miRNAs, including the miR-16 family and miR-17/20 that
target Cyclin D1 and have important roles in regulating G1
arrest and S-phase entry (Liu et al, 2008; Yu et al, 2008).
A systematic analysis, however, of miRNAs regulating the
EGFR pathway and downstream cell-cycle proteins has not
been performed.

The identification of targets of individual miRNAs is
commonly achieved by combining transient transfection of
miRNA mimics or inhibitors, target prediction algorithms and
gene expression profiling (Wellner et al, 2009; Uhlmann et al,

2010). This approach has two main drawbacks: first, it only
captures regulatory effects at the transcriptional level, which
might deviate from the outputs at the protein level; second, it
cannot distinguish direct and indirect effects induced by
miRNAs. A more direct, biochemical approach to identify
targets of miRNAs is RISC-IP, where miRNA and target mRNAs
are co-immunoprecipitated with Ago2 (component of RISC)
and then analyzed either by array-based hybridization
(Karginov et al, 2007) or by deep sequencing (Hanina et al,
2010). This approach has identified several genes that are
regulated both by mRNA degradation and by translational
repression (Thomson et al, 2011), and some rare cases of
50-UTR targeting (Grey et al, 2010).

Even with the knowledge of direct targeting, measurements
of miRNA effects directly at the protein level are needed to fully
comprehend the complexity of their activities. Recent ad-
vances in high-throughput proteomics have allowed research-
ers to begin addressing this issue. For example, two reports
used quantitative mass spectrometry to assess changes in
protein levels after overexpressing or knocking down selected
miRNAs (Baek et al, 2008; Selbach et al, 2008). Both reached a
similar conclusion: the miRNAs they studied affected the
expression of hundreds of proteins, but in a rather mild
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manner, fine-tuning protein synthesis. Another study used a
combination of a luciferase-based 30-UTR reporter assay and
label-free shotgun proteomics to identify targets of a liver-
specific miRNA, miR-122, revealing a network of miR-122-
regulated genes that was enriched for proliferation, cell cycle
and apoptosis, all of which are relevant to liver metabolism,
liver diseases and cancer-related processes (Boutz et al, 2011).
Researchers have also employed protein lysate arrays, which
allow higher throughput compared with mass spectrometry
methods, in one case screening 4300 miRNAs for regulatory
effects on the expression of the estrogen receptor alpha (ERa)
protein (Leivonen et al, 2009).

Despite these advances, understanding how miRNAs
regulate an oncogenic signaling system requires that we
simultaneously investigate the interactions between a body
of miRNAs and a network of proteins. In this work, we aimed
to systematically identify miRNAs that regulate the EGFR
pathway on the protein level, and to unravel principles of these
regulations. To this end, we screened a genome-wide library of
miRNA mimics for effects on the expression of 26 proteins in
the EGFR-driven cell-cycle pathway using reverse phase
protein arrays (RPPAs). This approach identified a series of
miRNAs that downregulate one or more proteins of the EGFR-
driven cell-cycle pathway. For most of the proteins with
reduced expression levels, sequence-based prediction of
targeting miRNAs can explain a significant portion of the
regulation. In order to uncover the organizational principles of
a mild, yet potentially very dense regulatory network, we
developed a novel network-based analysis approach to
identify those miRNAs that regulate multiple proteins in the
studied system. Network analysis implies that the proteins
controlling EGFR-driven G1/S transition are co-regulated by
several miRNAs. This principle is supported by the discovery
of three novel tumor-suppressor miRNAs that regulate the
EGFR-driven cell-cycle pathway.

Results

miRNome screen to unravel the miRNA–protein
interaction network of the EGFR pathway

To elucidate how the EGFR-driven cell-cycle protein network is
regulated at the genome-wide miRNA level, we performed a
gain-of-function screen using a mimic library containing 810
mature miRNAs (miRBase version 10.0). As readout, we
measured and quantified the abundances of 26 proteins in this
pathway. We employed the MDA-MB-231 breast cancer cell
line as our experimental system, where a large body of known
human miRNAs is expressed (429 detected with microarray,
and 598 by next-generation sequencing data, see Supplemen-
tary information, Supplementary Tables S1 and S2 and
Supplementary Figure S1 for details). Cells were transfected
using an automated robotics system with individual miRNA
mimics, and total protein lysates in miRNA overexpressing
cells were spotted on RPPAs. Next, we incubated the protein
arrays with thoroughly validated antibodies in an automated
pipeline (Figure 1A).

We chose the proteins to be examined from the EGFR
signaling/cell-cycle network (Table I) based on the two
criteria. First, the expression of the gene must be detectable

in the given cell line. We analyzed published RNA sequencing
data (Sun et al, 2011) and chose those genes with at least one
transcript detectable in the MDA-MB-231 cell line (Supple-
mentary Table S3). Second, a validated antibody for the RPPAs
must be available. To determine the specificity and sensitivity
of the antibodies, we validated each antibody using the RNAi-
based antibody validation method that we have previously
published (Mannsperger et al, 2010). Knockdowns with
siRNAs resulted in strong reductions of targeted proteins,
confirming the antibody specificity/sensitivity for all proteins
analyzed (Figure 1B, raw data provided in Supplementary
Table S4).

We performed the miRNome screen with two biological
replicates, which showed high correlations with an average
Pearson’s correlation coefficient of 0.78 (Figure 1C; Supple-
mentary Figure S2). We included miR-Control (scramble),
known EGFR-targeting microRNA miR-7 (Webster et al, 2009),
si-Control (scramble) and si-EGFR in all 34 screening runs
(each run involved transfection of 24 different miRNA
mimics). These quality control measures assured the robust-
ness of the screen (Supplementary Figure S3). We present the
global effect of whole-genome miRNAs on the EGFR/cell-cycle
network proteins, summarized as a matrix of 810�26¼21060
data points, as a heatmap in Figure 1D (the screen results are
provided in Supplementary Table S5). Overall, this experi-
mental platform combining a robust whole-genome miRNA
screen with quantitative proteomics allowed us to identify
miRNA–protein regulations in the MDA-MB-231 breast cancer
cell system.

Fine-tuning of EGFR pathway proteins by miRNAs
and the resulting miRNA–protein interaction
network

To build an miRNome–protein interaction network, we first
identified miRNA–protein pairs where the regulation was
statistically significant. For each protein, we used the z-score
method to quantify the effects of all miRNAs on its expression
(see Materials and methods). While a positive z-score suggests
upregulation of protein expression, a negative value indicated
a downregulation upon miRNA expression. For most proteins
analyzed, the global effect of miRNAs followed a normal
distribution with relatively short tails. This pattern suggests
that the effects of miRNAs are rather mild, thereby fine-tuning
the protein expression (in Figure 2A, PLCG1 is shown as an
example. Histograms for all other proteins are given in
Supplementary Figure S4).

To better characterize the properties of the underlying
miRNA–protein regulation network, we tested different
significance thresholds and chose two commonly used ones,
Po0.05 and Po0.001 (equivalent to |z|41.96 and |z|43.29,
see Materials and methods for details). We observed that
networks of different significance thresholds show distinct
patterns with respect to the number of remaining edges
(Figure 2B). The resulting miRNA–protein regulation network
is very dense at the lower threshold (|z|41.96), as can be seen
in Figure 2C. This high density is not entirely unexpected,
since (1) it has been computationally predicted that one
miRNA can regulate several genes, (2) one gene can be
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regulated by dozens of miRNAs and (3) indirect regulations are
possible. Our data are well in line with these hypotheses, and
provide the first large-scale experimental evidence, to the best
of our knowledge, at the miRNome level. The number of links

decreased sharply with increasing stringency (Figure 2B) and
we observed a relatively sparse graph with a low number of
regulations when applying a high significance threshold
(|z|43.29) (Figure 2D). These observations reveal potential
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Figure 1 Whole-genome miRNA (miRNome) screen with a quantitative proteomics readout. (A) Flow chart of the study. MDA-MD-231 cells were transfected in 6-well
format in an automated system with the miRNA library containing 810 mimics. Cells were lysed after 48 h of transfection and incubated with siRNA-validated antibodies
for RPPAs. Subsequent to primary data analysis, screen results were compared with target prediction algorithms for each downregulated network protein, and network
analysis of the EGFR/cell-cycle proteins at the miRNome level was done using the more-than-random co-regulation approach. (B) RNAi-based antibody validation. For
each network proteins, siRNAs were used to validate the specificity/sensitivity of the antibodies before they were incubated with the lysates of the miRNA screen. The x
axis of the heatmap shows siRNAs, and the y axis represents the antibodies used to quantify the abundance of proteins. (C) Pearson’s correlation coefficients between
the two biological replicates in the screen for each protein analyzed. (D) Heatmap showing the effect of whole-genome miRNAs on the EGFR/cell-cycle protein network.
MicroRNAs are given in rows and proteins in columns. While red rectangles show upregulation, blue ones show downregulation of proteins for given miRNAs.
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challenges in understanding the complex network: if the
significance threshold is set too low, regulatory relationships
are complicated and are noisy; on the other hand, if it is set too
high, too few edges will remain to reflect structural features of
the network.

To overcome this dilemma, one possibility is to combine the
low-stringency network with prior knowledge of miRNA-direct
target predictions. In order to construct such a network, one
can use pre-compiled miRNA-mRNA sequence mappings
provided by the microRNA.org database (http://www.microrna.
org/microrna/getDownloads.do, Release August 2010) by
choosing different stringencies of the sequence-matching
requirements (seed sequence mapping). We set the stringency
filter so that all target predictions having a 6-mer or more seed
sequence pairing are included. To construct the subnetwork,
we filtered the whole network by keeping miRNA–protein
edges that (1) has an absolute z-score larger than 1.96 and (2)
the miRNA is mapped to gene’s 30-UTR with at least one 6-mer
match or more. This approach led to 241 miRNAs and 25 genes
(PIK3CB was not a predicted miRNA target), with 355 edges
connecting them (Supplementary Figure S5; Supplementary
Table S6). We could further reduce the complexity of the
resulting network by using an evolutionary conserved
sequence-matching filter. To this end, we compared the low-
stringency network obtained from experimental data with
miRNA-direct target predictions made by TargetScan (Fried-
man et al, 2009). We only kept those miRNA–protein links
where (1) the miRNA significantly downregulates the protein
with |z|41.96 and (2) the miRNA is predicted to directly target
the 30-UTR of the gene in an evolutionarily conserved manner.
The resulting network, supported by both computational
predictions and experimental evidence, ended up with 120

potential miRNA/protein target interactions (Figure 3; Sup-
plementary Table S7).

In order to find out how many interactions in this network
were validated by previously published independent studies,
we manually searched the miRWalk database (http://www.
ma.uni-heidelberg.de/apps/zmf/mirwalk/) for predicted and
validated miRNA targets. Indeed, some of the miRNA direct
targeting interactions had been validated in other studies (16
validated interactions), e.g., the miR-143/KRAS (Chen et al,
2009), miR-200b/c/429/PLCG1 (Uhlmann et al, 2010) and
miR-7/EGFR (Webster et al, 2009). However, our results
identified many more new potential direct regulations. These
results suggest that our experimental platform, aided by
computational predictions to filter results, can indeed identify
miRNA–protein interactions, even if their effects are merely
moderate.

Seed/30-UTR matches dominate the negative
regulation of protein expression by miRNAs

To test whether the regulation by miRNAs is dominated by the
nucleotide matching mechanism between the miRNA seed
sequences and 30-UTRs of target genes, we assessed whether
protein expression differs in the presence of predicted
targeting miRNAs compared with non-targeting ones for each
protein in the network. For this purpose, we used two distinct
target prediction algorithms (TargetScan, Friedman et al,
2009; and MicroCosm, Griffiths-Jones et al, 2008; see Bartel,
2009 for detailed discussions on the prediction algorithms)
to compare predicted versus non-predicted miRNAs for
26 proteins in our network. We applied the Kolmogorov–

Table I Investigated proteins from the EGFR signaling/cell-cycle network

Gene symbol Protein symbol UniProtKB Protein name

AKT1 AKT1 P31749 v-akt murine thymoma viral oncogene homolog 1
AKT2 AKT2 P31751 v-akt murine thymoma viral oncogene homolog 2
CCND1 Cyclin D1 P24385 Cyclin D1
CCND3 Cyclin D3 P30281 Cyclin D3
CDK2 CDK2 P24941 Cyclin-dependent kinase 2
CDK4 CDK4 P11802 Cyclin-dependent kinase 4
CDKN1B p27/Kip1 P46527 Cyclin-dependent kinase inhibitor 1B
DUSP6 DUSP6 Q16828 Dual specificity phosphatase 6
EGFR EGFR P00533 Epidermal growth factor receptor
ERRFI1 MIG-6 Q9UJM3 Mitogen-inducible gene-6
FRAP1 mTOR P42345 Mechanistic target of rapamycin
GRB2 GRB2 P62993 Growth factor receptor-bound protein 2
GSK3B GSK3B P49841 Glycogen synthase kinase 3b
KRAS KRAS P01116 v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
MAPK1 ERK2 P28482 Extracellular signal-regulated kinase-2
MAPK14 p38 Q16539 MAP kinase p38a
MAPK3 ERK1 P27361 Extracellular signal-regulated kinase-1
MAPK8 JNK1 P45983 Jun N-terminal kinase
PIK3CA PIK3CA P42336 Phosphoinositide-3-kinase, catalytic, a polypeptide
PIK3CB PIK3CB P42338 Phosphoinositide-3-kinase, catalytic, b polypeptide
PLCG1 PLCG1 P19174 Phospholipase C, g1
PTEN PTEN P60484 Phosphatase and tensin homolog
PTPN11 PTPN11 Q06124 Protein tyrosine phosphatase, non-receptor type 11
RB1 RB1 P06400 Retinoblastoma 1
SHC1 SHC1 P29353 SHC (Src homology 2 domain containing) transforming protein 1
STAT3 STAT3 P40763 Signal transducer and activator of transcription

3 (acute-phase response factor)
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Smirnov (K–S) test, a non-parametric, threshold-free statis-
tical method (Smirnov, 1948), to assess whether distributions
of z-scores of the two groups differ significantly (or three
groups, in case of TargetScan with conserved and non-
conserved predicted targets). For most of the proteins with
predicted targeting miRNAs, we observed a significant
negative aberration of expression distributions (18 proteins
out of 25, with two-sided Po0.05). This suggests that
miRNAs, which are predicted to be direct targeting, are
indeed more likely to negatively regulate the protein expres-
sion level. A primary motif to mediate this reduction was the
match between the miRNA seed sequence and the 30-UTR of
the target gene (Figure 4).

This hypothesis has been supported by other studies in cases
of single miRNAs at both mRNA and protein level (Baek et al,

2008; Selbach et al, 2008; Boutz et al, 2011). However, here we
report the systematic expression shift caused by predicted
miRNAs in dozens of proteins from the EGFR pathway at the
miRNome level. We note that for some of the proteins, the shift
caused by conserved seeds was more profound compared with
the non-conserved ones. This potentially highlights the role of
species conservation in miRNA targeting. Interestingly, the
expression aberration was not significant for the rest of the
proteins. We assume this could partially be caused by a lack of
evolutionary conservation of seed-matching sequences, and
consequent lack of accurate predictions. Overall, changes in
the protein expression levels upon miRNA overexpression
suggest that computationally predicted miRNAs are more
likely to reduce expression of their targets, when compared
with non-predicted miRNAs.

P<0.05

P<0.001

A B

C D

P<0.05 P<0.001

Figure 2 Whole-genome miRNA regulation of the EGFR/cell-cycle protein network. (A) Histogram of the effects of the whole-genome set of miRNAs on the given
protein PLCG1 (for the histogram of the other proteins measured in this study, see Supplementary Figure S4). While the x axis demonstrates normalized z-scores of the
expression change of PLCG1 upon miRNA transfections, y axis shows the frequency (count) of miRNAs. (B) Edge numbers for different z-score thresholds. With
increasing stringencies of z-score, number of edges decreases rapidly. Two commonly used significance thresholds, Po0.05 and Po0.001 (equivalent to |z|41.96
and |z|43.29, respectively), were shown with red dots on the curve. (C) Dense miRNA–protein network at the absolute z-score threshold of 1.96. Blue circles represent
the proteins and black circles indicate the miRNAs. While green edges between an miRNA and a protein show downregulation of that protein by miRNA, red edges show
the upregulation of the protein by the given miRNA. miRNAs that regulate more than one protein are located on the circle and those miRNAs that regulate only one
network protein are located outside of the circle. (D) miRNA regulation of the EGFR network at a more stringent threshold (|z|43.29). The resulting network is much less
dense compared with the graph shown in (C).
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MiRNA co-regulation of proteins in the same
functional modules

Having an integrated miRNA–protein regulation network is
helpful to identify new miRNA targets. However, it does not
address whether the regulation of protein expression by
miRNAs follows any other rules besides the seed-matching
mechanism. Moreover, challenges emerge in maximizing the
signal-to-noise ratio for discoveries from the regulatory
network, calling for new strategies to identify patterns of
miRNAs regulating the EGFR-driven cell-cycle pathway.

In order to explicitly address these questions, we developed
a novel framework in the context of graph theory and complex
network analysis. First, we evaluated whether any two nodes
(here: proteins) on one side of a given bipartite network would
share a significant number of neighbors (here: miRNAs) on the
other side. Based on the z-scores from the RPPA data, a
bipartite graph containing all proteins and their significantly
regulating miRNAs was built. This bipartite graph allowed for
discovering statistically significant relationship patterns. Our
focus was to find pairs of proteins that were either consistently
co-upregulated or co-downregulated by a group of miRNAs.
Furthermore, we were interested in two proteins where
one was consistently upregulated and the other was down-
regulated by one or more miRNAs. We define any of these

three co-regulation patterns between proteins A and B to be
intrinsic, if the observed pattern occurred statistically sig-
nificantly more often than in a random model of the same
bipartite graph (the more-than-random model). In essence, our
method employed a bootstrapping approach in which the data
were permutated by maintaining some of the properties
(Figure 5A, see Materials and methods for details).

To this end and in order to detect the principles of miRNA
regulations as well as potential co-regulation patterns, we built
a consensus graph. This graph combined the information from
different bipartite graphs by varying parameters in the network
model (Figure 5B, see Materials and methods for details). Two
proteins are connected if and only if they were significantly co-
regulated by one or more miRNAs under all of the chosen
parameter values. The upper bound FDR of the consensus
graph was qo0.132 determined with the Benjamini-Hochberg
method (see Supplementary information and Supplementary
Figure S6 for details).

We observed that most edges between cell-cycle proteins
were present in the consensus graph, indicating that their
potential co-regulation by given miRNAs is robust. Further-
more, the miRNAs co-regulating the cell-cycle proteins showed
an interesting pattern that is biologically relevant: they
upregulated the expression of the CDK inhibitor protein
p27/Kip1, while downregulating the Cyclin-dependent kinase-4

Figure 3 Regulatory network showing only the miRNAs that are both predicted to target the given gene and downregulating the protein in our screen (with absolute
z-score 41.96). This interaction is shown with a black edge between the miRNA and protein. The validated miRNA/protein interactions in other independent studies are
shown with a green edge between the miRNA and the protein. The yellow circles indicate the miRNAs, which are identified to regulate EGFR-driven cell-cycle network in
this study. The full list of miRNAs and proteins is given in Supplementary Table S7.
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(CDK4) and RB1 which would, in turn, inhibit cell-cycle
progression (Figure 5B). Of note, PIK3CA, AKT2 and PLCG1
were co-downregulated with retinoblastoma protein RB1 (for
PIK3CA and AKT2) and CDK4 (for PLCG1) by dozens of
miRNAs. This observation might be linked to the key roles

these proteins likely have in the regulation of the G1/S
transition in the MDA-MB-231 cell line model. Overall, these
results indicate that proteins, which fall into the same known
functional modules (here: EGFR-driven cell-cycle module), are
co-regulated by miRNAs.
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Figure 4 The match between miRNA seed sequences and 30-UTR of the genes explains the reduction in the expression of most of the proteins in the EGFR/cell-cycle
network. The Kolmogorov–Smirnov (K–S) test was used to assess whether distributions of z-scores of two groups (predicted versus non-predicted miRNAs) differ
significantly. For most of the proteins with predicted targeting miRNAs, a significant negative aberration of expression distributions was observed (18 proteins out of 25,
with two-sided Po0.05). Black lines demonstrate the z-score distribution of the non-predicted miRNAs against that of predicted ones. Two target prediction algorithms
were used shown in red (TargetScan, conserved), yellow (TargetScan, non-conserved) and blue (MicroCosm) lines.
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MiRNAs 124, 147 and 193a-3p inhibit G1/S
transition and cell proliferation by targeting
EGFR signaling and/or cell-cycle proteins

The network-analysis approach has the power to predict the
outcome of overexpressing individual miRNAs in the context
of the EGFR-driven cell cycle. For example, miR-124, 147 and
193a-3p were among the miRNAs with highest degrees in the
consensus graph (Figure 6A, source data in Supplementary
Table S8). Furthermore, the expression of several key proteins
controlling G1/S transition was regulated in a tightly
coordinated manner by these miRNAs (Figure 6B). Therefore,
our analysis predicted that they should, when overexpressed,
alter cell-cycle progression patterns by inhibiting the G1/S
transition. We performed molecular and cellular assays to
confirm the validity of these predictions.

First, we validated all regulations shown in Figure 6B for
all three miRNAs with western blots (Figure 6C). We also
validated the overexpression of miR-124, miR-147 and

miR-193a-3p after transfection with miRNA mimics by
qRT–PCR (Supplementary Figure S7). All three miRNAs co-
regulated cell-cycle components either by reducing RB1 level
or by increasing p27/Kip1 level or affecting both (Figure 6B).
For miR-124, we observed a core regulation of seven EGFR
protein network components. The PTEN tumor suppressor
had the highest number of connections with other proteins and
was co-upregulated with p27/Kip1. In case of miR-147, AKT2
was co-downregulated with CDK4 and RB1, indicating the
potential impact of AKT2 on cell-cycle progression. Finally, for
miR-193a-3p, PIK3CA was co-downregulated with CDK4 and
Cyclin D1 as well as with MIG-6.

We then tested the prediction that all three miRNAs inhibit
EGFR-driven G1/S transition by targeting several components
simultaneously at the phenotypic level. By staining cells with
BrdU (for S-phase fraction) and 7-AAD (for total DNA
content), we could show that all three miRNAs induced a
very strong G1 arrest in the breast cancer cell line MDA-
MB-231 (Figure 7A). Furthermore, viability of the cells was
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reduced after 72 and 96 h upon individual overexpression of
these miRNAs (Figure 7B).

In order to test whether or not the regulation of proteins by
miRNAs resulted from direct targeting, we cloned the 30-UTRs
of the downregulated genes into a luciferase reporter vector,
and performed luciferase reporter assays. For genes with long
and difficult to clone 30-UTRs, we fragmented the 30-UTR into
two or three parts (denoted as P1, P2 and P3). AKT2, p38
MAPK and STAT3 were predicted to be conserved targets of
miR-124 (Supplementary Figure S8A), and were also identified
as potential direct targets in our study (Figure 7C). Although
CDK4, CDK2 and SHC1 were poorly conserved predicted
targets of miR-124 (Supplementary Figure S8A), they were not
identified as direct targets. RB1 was neither predicted nor
found to be a direct target. These data demonstrate that the
inhibitory effect of miR-124 on cell-cycle progression could be,

at least in part, via targeting EGFR core proteins that were
analyzed in this study. In the case of miR-147, AKT2 and Cyclin
D1 were predicted to be poorly conserved direct targets
(Supplementary Figure S8B), and identified here as direct
targets. These data suggest that targeting of AKT2 and Cyclin
D1 by miR-147 contributes to its strong inhibitory effect on G1/
S transition (Figure 7C). Finally, JNK1 was identified as a direct
target of miR-193a-3p, and could potentially contribute to the
strong inhibitory effect miR-193a-3p had on cell-cycle progres-
sion (Figure 7C).

We further tested the effects of miRNAs on mRNA
expression of their targets to examine if the targeting was
mediated via mRNA cleavage or translational repression
(Figure 7D). We found that three of six miRNA/target
interactions (miR-124/AKT2, miR-147/AKT2 and miR-193a-
3p/JNK1) reduced protein expression of their target genes
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Figure 6 Regulatory graphs for miR-124, miR-147 and miR-193a-3p and Western blot validation of RPPA results. (A) Rank of miRNAs based on their frequency in the
consensus graphs. Only the first top 50 miRNAs are drawn. The miRNAs (miR-124, miR-147 and miR-193a-3p) that were chosen for experimental validations are shown
with red dots. (B) Co-regulation of EGFR/cell-cycle proteins is shown for three miRNAs, which were among the miRNAs having the highest number of more-than-random
regulations. Cell-cycle proteins are drawn as dark gray nodes and shown in a light gray background. Color codes of the edges are as in Figure 5B. (C) Western blot
validation of the effects of these three miRNAs on the protein expression the EGFR/cell-cycle components. b-Actin was used as loading control.
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without significant changes at the mRNA level. These data
consolidate the concept that the analysis of miRNA effects at
the protein level is more informative and comprehensive than
that only at the mRNA level.

Finally, in order to rule out that the observed results are cell
line specific, but rather can be generalized in breast and other
cancer types, we validated our results in another breast cancer
cell line, MCF-7, as well as in the U87 glioblastoma cell line.
The latter represents another tumor type where EGFR
signaling has a critical role in the pathogenesis (Hatanpaa
et al, 2010). Similarly to the results we had obtained in the
MDA-MB-231 cell line, all three miRNAs (miR-124, miR-147

and miR-193a-3p) led to a reduction of the cell population in
S-phase and also in reduced cell viability (Figure 7E and F).
Furthermore, we recapitulated all the direct targeting relation-
ships in these two cell lines (Supplementary Figure S9A). The
only difference which we observed was that targeting of AKT2
by miR-124 or miR-147 was via translational repression in
MDA-MB-231 cell line while it was via mRNA cleavage in
MCF-7 (in case of miR-147) and in U87 (in case of both
miR-124 and miR-147) (Supplementary Figure S9B).

Overall, our results indicate that the three miRNAs predicted
to interfere with the cell-cycle subnetwork indeed block the
G1/S transition of cancer cell lines by regulating multiple
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proteins of the EGFR/cell-cycle network simultaneously.
Therefore, we propose these miRNAs as potential tumor
suppressors in breast cancer. Furthermore, their discovery
underscores the value of the platform, which combines high-
throughput proteomics and a network-analysis framework,
in identifying regulatory patterns in a complex biological
network.

Discussion

In this first proteomics screen investigating a mammalian
oncogenic signaling network at the miRNome level, we
systematically identified miRNAs that regulate the expression
of 26 proteins in the EGFR-driven cell-cycle pathway, and
developed a novel framework to unravel principles of these
regulations. Our results indicate that a robust combination of
miRNA screening with a proteomic readout and network-
analysis tools helps to identify miRNAs regulating a given
protein network and to discover (co-)regulation patterns of the
proteins.

Our study led us to three key conclusions: (1) whole-genome
miRNA effects on a given protein are generally mild supporting
a fine-tuning role for miRNAs, and these effects are dominated
by sequence-matching mechanisms. (2) A new network-
analysis methodology identified co-regulated protein targets.
Our results suggest that miRNAs simultaneously regulate
several proteins belonging to the same functional module.
(3) Three miRNAs (miR-124, miR-147 and miR-193a-3p) act as
novel tumor suppressors by co-regulating EGFR-driven cell-
cycle network proteins, thus qualifying as potential targets for
breast cancer therapy.

As in-silico predictions for miRNA targets rely on Watson–
Crick base pairing between the miRNA seed region and the
30-UTR of target genes, we tested this hypothesis at the
genome-wide miRNA level for 25 of the 26 proteins analyzed
in this study. PIK3CB had to be excluded from this analysis as
its 30-UTR was not represented in the target prediction
databases used. Our data showed a systematic expression
shift caused by predicted miRNAs in dozens of proteins from
the EGFR pathway. These observations are very much in line
with two previous studies which examined the effects of a few
miRNAs on the proteome (up to 5000 proteins) using mass
spectrometry-based approaches (Baek et al, 2008; Selbach
et al, 2008).

Compared with these two studies, we scaled up the tested
miRNAs to the whole-genome level while scaling down the
number of proteins to a single pathway. This trade-off between
the number of miRNAs and proteins tested was indispensable
due to the methodologies chosen and the biological questions
addressed. Protein arrays have the capacity of examining
thousands of samples, but are limited by antibody availability
(Wilson et al, 2010). On the other hand, mass spectrometry can
analyze only a limited number of samples, but has the capacity
of analyzing thousands of proteins (Choudhary and Mann,
2010). Undoubtedly, our approach complements these two
studies and suggests that the 30-UTR-seed match contributes to
the targeting of not only a few miRNAs, but for the whole-
genome set of miRNAs. Further development in high-
throughput technologies will eventually generate a global

picture by analyzing miRNome versus proteome in the future.
For certain proteins, we did not observe a significant difference
between expression changes caused by predicted miRNAs
compared with those by non-predicted ones. Besides a
possible lack of evolutionary conservation of seed-matching
sequences other factors, e.g., shortened 30-UTRs due to
alternative polyadenylation (Fu et al, 2011), could contribute
to this observation in the analyzed cell system. This raises the
necessity for further investigations.

We next asked whether miRNA targets could also be
identified by combining expression correlation analysis with
computational target predictions and without performing a
large-scale screen. Therefore, we tested if the miRNA–protein
interaction network we obtained (Figure 3) could as well be
simply inferred by performing computational target prediction
based on expression correlation analyses. For this purpose, we
employed two publicly available NCI60 cancer cell line panel
data sets at miRNA-mRNA (Liu et al, 2010) and miRNA–pro-
tein levels (Shankavaram et al, 2007). In-silico prediction was
indeed able to infer the potential regulatory relationships for a
very small proportion of miRNA–gene or miRNA–protein pairs
that we had identified with the proteomics screen approach
(see Supplementary Table S9, Supplementary Figure S10 and
Supplementary information for details). However, this method
missed the major part of the miRNA–protein network
identified in the screen. Therefore, we believe that correlation
analysis combined with predictions might be useful as filters to
prioritize miRNA–gene pairs for experimental validation.
However, due to the high false-positive and false-negative
rates, these computational methods cannot compensate for
wet-lab proteomics screening.

Loss-of-function studies of miRNA targets (e.g., by siRNAs)
partially mimics, in most cases, the molecular and phenoty-
pical observations induced by miRNA expression (Uhlmann
et al, 2010). This is likely to be caused by a very complex
regulation of several targets by a single miRNA or simulta-
neous targeting of a protein by dozens of miRNAs. Further-
more, identifying targets of miRNAs with transcript-based
array profiling is a useful approach that, however, has
considerable drawbacks. As miRNAs might lead to transla-
tional inhibition without affecting the mRNA level, transcript-
level approaches can miss certain targets. This latter assump-
tion was proven in our study as three out of six examined
miRNA/target pairs downregulated their targets only at the
protein level without affecting the respective mRNA levels.
Thus, it would have not been possible to identify these targets
with an mRNA-based approach.

To circumvent these two problems, i.e., complexity of
miRNA regulation and limitations of mRNA level study, and to
get more insights into the miRNA biology, we devised a protein
network level study. To this end, we combined a proteomic
approach with a novel network-analysis framework to identify
those proteins that are co-regulated by miRNAs in an intrinsic
way. This approach helped us to filter noise from screen data
while maintaining the ability to detect structural properties,
i.e., co-regulated proteins, from a network containing mild and
noisy relationships. In this way, we identified proteins that
were significantly co-regulated by miRNAs. Several cell-cycle
components that regulate the G1/S transition check point were
found to be co-regulated. For example, while proteins driving
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the G1/S transition (Cyclin D1 and CDK4) were co-down-
regulated with RB1 by dozens of miRNAs (35 and 31 miRNAs,
respectively), Cyclin D1 and CDK4 were co-upregulated by 19
miRNAs. Furthermore, RB1 and CDK4 were inversely co-
regulated with p27/Kip1 CDK inhibitor (30 and 19 miRNAs,
respectively). These data suggest that miRNAs might rather
have tumor-suppressor than oncogenic functions. We also
observed that AKT1 and ERK2 were co-downregulated by 30
miRNAs. These miRNAs may potentially lead to the simulta-
neous inhibition of two key pathways regulating cell survival
and proliferation, highlighting their potential to be used as
drugs themselves.

Based on the analysis framework, we selected three
miRNAs, miR-124, miR-147 and miR-193a-3p, for their roles
in the G1/S transition. Inhibitory effects of these three miRNAs
on cell proliferation were potentially mediated by targeting
EGFR network proteins (e.g., AKT2, STAT3, p38 and JNK1) as
well as Cyclin D1, a key G1/S transition regulating protein.
Supporting the tumor-suppressor function of miR-124, it was
reported that its expression is reduced in glioblastoma and its
ectopic expression inhibits tumor migration and invasion
(Fowler et al, 2011). Furthermore, miR-124 was found to be
epigenetically silenced in acute lymphoblastic leukemia (ALL;
Agirre et al, 2009) and to regulate the CDK6/RB pathway by
targeting CDK6 post-transcriptionally in ALL as well as in
medullablastoma (Pierson et al, 2008). Similarly, miR-193 was
epigenetically silenced in acute myeloid leukemia (AML) and
targets the c-Kit oncogene leading to apoptosis (Gao et al,
2011). The role of miR-147 was reported to be in feedback
regulation of inflammation where toll-like receptors (TLRs)
induce miR-147 expression, which involves binding of NF-kB
and STAT1a to the miR-147 promoter. This induction, in turn,
inhibits cytokine expression and prevents excessive inflam-
matory responses (Liu et al, 2009).

To demonstrate that the effects of miR-124, miR-147 and
miR-193a-3p on EGFR signaling have a more general nature,
we tested the miRNA-target interactions and tumor-suppressor
functions in another breast cancer as well as in a glioblastoma
cell line. The results potentially support the principal tumor-
suppressor function of these miRNAs by targeting key
components of the EGFR/cell-cycle pathway. To further
confirm the miRNA-target interactions and tumor-suppressor
roles of these miRNAs, large breast cancer or other cancer type
collections have to be analyzed using miRNA/mRNA profiling,
deep sequencing and/or immunohistochemistry (IHC) or
protein array-based methods. The published data together
with our results for breast cancer and glioblastoma cell lines
indicate that these three miRNAs might have tumor-suppres-
sor functions by regulating different processes, e.g., cell-cycle,
invasion, and inflammation related to cancer, and could
potentially be targets for cancer therapy.

In summary, we identified miRNAs that regulate the EGFR-
driven cell-cycle pathway. Starting from experimental results
and by combining computational analysis and a network-
based analytical framework, we could show a parsimonious
picture of how miRNAs regulate the protein network: by
sequence matching, and by intrinsic co-regulation of proteins
belonging to same functional module. Our results provide the
research community with a unique resource to identify
novel miRNA-target interactions. This paves the way toward

studying miRNA–protein interactions at a network level to
elucidate the complex regulation of biological processes by
miRNAs, which assure further detailed studies in future.

Materials and methods

Cell culture

The human breast cancer cell lines MDA-MB-231 and MCF-7 and the
glioblastoma cell line U87 were obtained from ATCC (Manassas, VA,
USA). Culturing media and supplements for the MDA-MB-231 and
MCF-7 cells were described previously (Sahin et al, 2009). U87 was
cultured in DMEM (Invitrogen, CA, USA) supplemented with 10% FBS
and 1% Pen/Strep. Contamination tests of the cell lines were
performed by the DKFZ Core Facility.

Screening with the miRNA mimic library

Cells were seeded in 6-well plates and were transfected with the
miRIDIAN miRNA mimic library (Dharmacon, CO, USA), which
comprises 810 miRNA mimics, using Lipofectamine 2000 (Invitrogen,
CA, USA) with help of a Biomek FX pipetting robot (Beckman Coulter,
CA, USA). Each miRNA mimic was transfected at a final concentration
of 25 nM in two biological replicates. The miRNome screen was
accomplished in 34 screening runs and each run included 24 miRNA
mimics, two positive controls (miR-7 and si-EGFR; Dharmacon), three
negative controls (miR-Control-1 and miR-Control-2; Dharmacon)
and siRNA control siAllstar (Qiagen, Hilden, Germany). Forty-eight
hours after the transfection, the cells were harvested and further used
for RPPAs.

Reverse phase protein arrays

Lysates were prepared as previously described (Sahin et al, 2009). Two
biological replicates and three technical replicates were spotted for
each miRNA mimic on nitrocellulose-coated glass slides (Grace
Biolabs, OR, USA) using an Aushon 2470 contact printer (Aushon,
MA, USA). Target protein-specific primary antibodies (Supplementary
Table S10) were validated using siRNAs (siRNA sequences are given in
Supplementary Table S11) as previously described (Mannsperger
et al, 2010) and incubated at a dilution of 1:300. After incubation
with Alexa680-labeled secondary antibodies (Invitrogen, Karlsruhe,
Germany), signals were visualized using an Odyssey scanner (LI-COR,
NE, USA). Signal intensities were quantified using Gene Pix Pro 5.0
(Molecular Device, CA, USA) and background corrected. Data pre-
processing and quality control was performed with the custom R
package caUtils.

Immunoblot analysis

Preparation of protein lysates and western blotting was previously
described (Sahin et al, 2009). In all, 10mg of protein was separated by
SDS–PAGE and exposed to primary antibodies (Supplementary Table
S10). HRP-conjugated secondary antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Plasmid constructs and luciferase reporter assay

The 30-UTRs of potential miRNA target genes were amplified by PCR
using human genomic or complementary DNA (primer sequences
were given in Supplementary Table S12) of MDA-MB-231 cell line, and
cloned into the psiCHECK2 vector downstream of the luciferase ORF
using the SgfI or, XhoI and NotI sites depending on the gene. For the
luciferase reporter assays, cells were co-transfected with 25 nM of
miRNAs and 15 ng of the luciferase vector. Firefly and Renilla luciferase
activities were measured after 48 h using a luminometer (Tecan,
Männedorf, Switzerland), according to the manufacturer’s instruc-
tions. Relative luciferase activity was determined by the ratio of Renilla
luciferase signal intensity to that of firefly for normalization. The
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average and standard deviation of the ratio were estimated by the
Delta-method (Bioconductor ratioAssay).

Cell-cycle analysis and viability assay

MDA-MB-231, MCF-7 or U87 cells were transfected with miRNA
mimics (miR-124, miR-147 and miR-193a-3p) and control miRNA.
Forty-eight hours after transfection, 7-AAD/BrdU cell-cycle assay was
done according to the manufacturer’s protocol (BD Biosciences, CA,
USA). Stained cells were measured by flow cytometry (FACSCalibur,
BD Bioscience, Heidelberg, Germany) using Cell Quest Pro software
(BD Bioscience, Heidelberg, Germany). Cell viability was measured
using Cell Titer Glo Luminescent Cell Viability assay (Promega, WI,
USA) following the manufacturer’s instructions. Transfections were
carried out in a 96-well plate (8�103 cells per well) in a final miRNA
mimic concentration of 25 nM per well with five replicates.

Quantitative RT–PCR of mRNAs

Total RNAwas isolated using the RNeasy Mini Kit (Qiagen). cDNAwas
synthesized from 10 ng of RNA using the Revert Aid H Minus First
Strand cDNA Synthesis Kit (Fermentas, St Leon-Rot, Germany)
according to the manufacturer’s instructions. For reverse transcriptase
PCR reactions, the TaqMan Abgene universal mix (Thermo Scientific,
Rockford, IL, USA) and probes from the Universal Probe Library
(Roche, Penzberg, Germany) were used. Oligonucleotide primers were
synthesized by Sigma-Aldrich (MO, USA). Sequences of primers and
the respective UPL probe numbers are given (Supplementary Table
S13). Data were analyzed according to the DDCt method (Bioconductor
ddCt).

Data analysis

Images of RPPAs were captured by the GenePix software. Local
background values were removed with the default option. The
normalization against total protein concentration was performed with
an additive linear model. Relative protein abundance of each miRNA
was summarized as z-score (Malo et al, 2006). Two replicates were
summarized by the mean of square sum.

The miRNA target predictions were queried in two target prediction
databases: TargetScan (http://www.targetscan.org) and MicroCosm
(http://www.ebi.ac.uk/enright-srv/microcosm/cgi-bin/targets/v5/
search.pl) with default parameters. Kolmogorov–Smirnov tests were
performed with R. Cell-based assay results were analyzed with R
packages in the Bioconductor (Gentleman et al, 2004) community.
All the other statistical analysis, if not explicitly stated, was
performed using R scripts.

Network analysis of the miRNA–protein network

Construction of bipartite graph
The experimental data can be represented in an array A of dimensions
(number of proteins)¼26 times (number of miRNAs)¼810. Let P be the
set of proteins and M be the set of miRNAs. Given a threshold t1, the
bipartite graph G(t1)¼(MUP, E) contains an edge between protein A
and miRNA X if the expression level of A upon transfection with X has
a z-score whose absolute value is at least as large as t1. This edge is
unweighted, but we differentiate it as upregulating or downregulating
edge, which is represented by different colors.

The number of edges adjacent to a protein or miRNA is defined as
its degree. For a given bipartite graph, we compute a sample of
randomized bipartite graphs in which each node has the same number
of edges of both regulation types, i.e., we maintain the so-called degree
sequence of the two sides (Zweig, 2011). The method to compute these
samples is explained in the following subsection. By this randomiza-
tion, we accomplish a bootstrapping method that helps us to identify
those co-regulations that are not merely caused by the structural
constraints (degrees) of the system. For these samples and all of the
three co-regulation patterns (co-upregulation, co-downregulation and
antagonistic co-regulation), a P-value is then assigned to each pair of

proteins that describes how likely it is to see these two proteins at least
as often in the given pattern just by random fluctuations. If these
values are low, we claim that the pattern is more-than-random. The P-
value then needs to be thresholded by a second threshold t2 to result in
the final co-regulation network between the proteins.

Definition of the more-than-random model
Given the bipartite graph G(t1) the degree of each protein and each
miRNA is fixed, but the connections between them are perturbed by
the following procedure: In each step, pick two edges (A,X) and (B,Y)
uniformly at random (here: A and B are two proteins, and X and Yare
two miRNAs). If both edges are of the same regulation type, try a so-
called edge swap: if (A,Y) and (B,X) are not yet connected, remove
edges (A,X) and (B,Y) and add edges (A,Y) and (B,X). If at least one of
the edges (A,Y) or (B,X) already exists, do nothing. The edge swap
constitutes a random walk on a Markov chain (Brualdi, 2006). It is thus
assured that, if the number of attempted and conducted edge swaps is
large enough, the resulting graph is a random sample from all bipartite
graphs with this fixed degree sequence. In our experiments, we
computed 10 000 samples after q log q time steps, where q is the
number of edges in the respective bipartite graph. The first random
walk starts at the observed bipartite graph, all following ones start
from the previously obtained bipartite graph.

Assessing the P-value of a given relationship between
two proteins
For any two proteins A, B and any of the four relationships (I (co-
upregulation), II (co-downregulation), and the two antagonistic
patterns: IIIa and IIIb) the number of miRNAs constituting this
relationship is computed in the data and denoted by obsI(A,B),
obsII(A,B), obsIIIa(A,B) and obsIIIb(A,B). The observed value is
compared with the distribution of these values in the samples. We are
interested in the P-value, i.e., the percentage of samples in which the
value is at least as large as the observed one. For each pair of proteins
and each observed relationship that occurs at least once, this P-value is
then computed for the given number of samples.

Computing consistent co-regulation relationships
between proteins
After all P-values are computed, a second threshold t2 is chosen and
two proteins are connected if their P-value is at most as large as t2. The
resulting graph is denoted by G(t1, t2). To determine a set of suitable t2
thresholds, we computed the so-called clustering coefficient for a fine-
grained set of possible t2 thresholds (Watts and Strogatz, 1998). The
rational is that if there is a substantial connectedness or even different
levels of connectedness in the graph, then this curve will show one or
more maxima or plateaus in the clustering coefficient. This will then
enable us to identify structural changes between the graphs obtained
with different thresholds t2. In our case, there were little jumps in
which the average clustering coefficient increased (Supplementary
Figure S11). A jump means a difference between the clustering
coefficients for two consecutive P-values. We selected the five largest
differences occurring at a still reasonable significance level. We chose
the 0.01ot2o0.2 domain and imposed that the difference between two
consecutive chosen t2 values should be 40.01.

Note that A and B can, in principle, be connected by all three kinds
of edges but, biologically, we expect that A and B are (a) in only one
relationship, or (b) co-upregulated by some miRNAs (pattern I) and co-
downregulated by others (pattern II) or (c) that they are always
antagonistically co-regulated (pattern IIIa/b). Inconsistent mixtures of
these patterns have not occurred with any combinations of t1 and t2
that we have tested so far. The edges can be assigned with the miRNAs
that induce the relationship between the two proteins

The consensus graph
As we reasoned in the Results section, the choice of t1 influences the
resulting bipartite graph. It will also influence the identification of
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those co-regulations that are statistically significant as edges are added
to the system. To keep only those co-regulations that are assigned
statistical significance under different t1 thresholds, we built the
consensus graph. For this purpose, we chose three relatively relaxed
thresholds for t1, namely 1.28 (Po0.2), 1.64 (Po0.1) and 1.96
(Po0.05). For those, we computed the P-values of all relationships and
the resulting protein co-regulation graphs for a series of five t2 values.
The t2 thresholds were chosen based on the change of the average
clustering in function of the P-values. These graphs vary in their s
ize and the number of edges. We concentrated on those edges that all of
the three graphs (corresponding to one strictness level t2) find
statistically significant. This results in a consensus graph, in
which each edge only exists if it is contained in all three graphs at
the same t2 value.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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