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ABSTRACT

We describe here a novel method for integrating gene
and miRNA expression profiles in cancer using feed-
forward loops (FFLs) consisting of transcription factors
(TFs), miRNAs and their common target genes. The
dChip-GemiNI (Gene and miRNA Network-based
Integration) method statistically ranks computationally
predicted FFLs by their explanatory power to account
for differential gene and miRNA expression between
two biological conditions such as normal and cancer.
GemiNI integrates not only gene and miRNA
expression data but also computationally derived
information about TF–target gene and miRNA–mRNA
interactions. Literature validation shows that the
integrated modeling of expression data and FFLs
better identifies cancer-related TFs and miRNAs
compared to existing approaches. We have utilized
GemiNI for analyzing six data sets of solid cancers
(liver, kidney, prostate, lung and germ cell) and found
that top-ranked FFLs account for �20% of transcrip-
tome changes between normal and cancer. We have
identified common FFL regulators across multiple
cancer types, such as known FFLs consisting of MYC
and miR-15/miR-17 families, and novel FFLs consisting
of ARNT, CREB1 and their miRNA partners. The results
and analysis web server are available at http://www
.canevolve.org/dChip-GemiNi.

INTRODUCTION

A fundamental challenge in cancer systems biology is to
identify the regulators of transcriptomic changes during
disease progression. These transcriptomic changes are
regulated by many different mechanisms including
genetic and epigenetic modifications (1). Transcription
factors (TFs) and microRNAs (miRNAs) are important
regulators at the transcriptional and post-transcriptional
levels that modulate transcriptome changes and therefore
gene expression in response to cellular environment and
signals. Both TFs and miRNAs are known to act as
oncogenes or tumor suppressors in human cancers (2–4).
Therefore, understanding and utilizing regulatory network
information for TFs and miRNAs and their target genes
could shed light on altered regulatory genes and pathways
in human cancers and suggest novel therapeutic targets.
Integrative analysis of both data types is underscored by a
recent study showing that destabilization of target
mRNAs by miRNA is the predominant mechanism to
reduce gene expression, highlighting an essential role of
miRNAs in gene regulation (5).
The miRNA-mediated feed-forward loops (FFLs) con-

sisting of TFs and miRNAs are recurrent and important
network motifs that form functional modules in the larger
regulatory network (6,7). These FFL network motifs
consist of a TF, a miRNA and their common target
genes (defined as FFL target genes), where the TF regu-
lates the transcription of the miRNA and both the TF and
the miRNA regulate a common set of target genes (6–10).
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The FFLs govern many aspects of normal cell functions
and diseases: creating bistable switches of gene expression
in developing tissues for spatial avoidance; controlling the
time sequence of gene expression to create temporal
avoidance; and minimizing expression fluctuation against
noise (11). For example, the FFL consisting of c-Myc,
miR-17 cluster and E2F1 modulates cellular proliferation
in cancer (3,8); the FFL formed by p53 and miR-34a-c
promotes cell cycle procession (9); and several FFLs
involving miR-7 buffer gene expression against environ-
mental fluctuation during development (10). There are
several databases of FFLs for development and cancer
(12,13). However, large-scale experimental identification
of FFLs and their roles in cancer has not been carried out.
A large amount of genome-wide gene expression and

miRNA expression profiles for the same set of samples
and covering multiple cancer types are now available
from focused efforts of individual laboratories as well as
large projects, such as TCGA (14) and ICGC (15). A
common theme among currently available integrative
analysis approaches is to first identify differentially ex-
pressed genes and miRNAs and then look for enriched
gene ontology (GO) groups and pathways or miRNA–
target gene pairs that are negatively correlated in expres-
sion level (16,17). While these methods can generate
biological hypotheses that involve single genes or
pathways, they do not fully use the genetic network
architecture implied by the TF and miRNA regulation.
Although researchers have studied FFLs in specific
diseases or computationally discover them using genome
scans (18–20), the network structures of TF, miRNA and
regulated genes have not been used in integrative analysis
of gene and miRNA expression data in a systematic
manner.
We hypothesized that dysregulation of TF–miRNAFFLs

could account for a large proportion of transcriptome
changes between normal and disease states such as cancer.
Therefore, we investigated the transcriptome changes by
looking at gene, TF and miRNA expression profiles in the
context of FFL networks. We developed a novel integrative
analysis method dChip-GemiNI (Gene and miRNA
Network-based Integration), which not only combines
gene and miRNA expression profiles available for a
disease process, but also incorporates regulatory network
structure in the form of computationally identified
TF–miRNA FFLs. The utilization of FFLs also provides
a principled way to integrate these expression profiles.
GemiNI statistically ranks predicted FFLs by their explana-
tory power to account for differential gene and miRNA
expression between two biological conditions such as
normal and cancer and assesses their significance using
permutation.
We applied dChip-GemiNI to six paired gene and

miRNA data sets of human cancers. We identified
common miRNAs, TFs and FFLs across cancer types and
quantified the proportion of transcriptome changes in
cancer, which can be explained by top-ranking FFLs.
Validation with systematic literature mining suggested that
integrative analysis of expression and FFLs can better
predict cancer-related TFs and miRNAs compared with
using gene expression data alone, modeling FFLs better

identifies cancer-related regulators and FFL-based integra-
tive analysis is more robust. We identified well-known as
well as novel FFLs that are common across multiple
cancer types or cancer-specific. These top ranked, novel
FFLs form experimentally testable hypotheses that
regulatory interactions of the involved TFs, miRNAs and
their target genes are driving regulators and effectors in one
or multiple cancer types.

METHODS

We developed the dChip-GemiNI analysis method to inte-
grate the regulatory network structure with the combined
gene and miRNA expression profiling data generated for
two biological states, such as normal and cancer. At
present, dChip-GemiNI focuses on TF–miRNA FFLs
where a miRNA mediates the effect of a TF on their
common downstream target genes. The multistep process
leading to data integration is outlined in Figure 1.

The first step identifies candidate FFLs from the regu-
latory relationships between TFs, miRNAs and target
genes based on computational prediction of gene targets.
In the second step, appropriate cancer data sets with both
miRNA and mRNA expression profiles are identified and
pre-processed. In the third step, we compute the network
motif score (NMS) and the false discovery rate (FDR) for
each candidate TF–miRNA FFL. The NMS is a function
of multiple scores, including TF and miRNA binding
scores to their target sequences, differential expression
P-values of the FFL components between normal and
cancer tissues, and TF and miRNA’s target enrichment
in differentially expressed genes and miRNAs. The signifi-
cance of NMS is assessed by their P-values based on null
distributions obtained by permuting sample group labels
and by FDR based on network permutation. Each step is
described in detail below.

Construction of candidate TF–miRNA FFL networks

Using the TF–target and the miRNA-target information
from motif scanning and prediction databases, we curated
candidate TF–gene, TF–miRNA and miRNA–gene regu-
latory pairs. See Supplementary Figure S1 for the data set
statistics. Based on these pairs, we further constructed
TF–miRNA–gene networks using matrix representation
of regulation targets. The scores of binding affinity were
also used in advanced analysis with matrices containing
these scores.

TF–target gene relation
We used the tfbsConsSites and tfbsConsFactors data
tables from the UCSC Genome Browser that contain the
location and score of TF binding sites (TFBSs) conserved
in the human/mouse/rat whole genome alignments. The
tfbsConsFactors table contains position frequency
matrix (PFM) of TFBS motifs from TRANSFAC. We
searched for TFBS in the 5-kb promoter region
upstream of the transcription start site (TSS) of RefSeq
genes. In addition, we performed a human-only TFBS
search using TRANSFAC matrices v7.0 and UCSC
hg18 genome assembly with the Perl TFBS module (21).
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The TF matrix accessions were linked to SWISS-PROT
IDs and mapped to NCBI gene IDs using BioMart.

TF–target miRNA relation
We downloaded the miRBase (22) pre-miRNA genomic
locations from UCSC table browser to locate miRNA
promoter regions on the genome. We searched for TFBS
in 5-kb upstream of pre-miRNAs, assuming TFs regulate
miRNAs in a similar way as they regulate genes (23,24).
We considered miRNA clusters and miRNA host genes
when making TF–target miRNA predictions. miRNAs
tend to form clusters as polycistrons on chromosome
and are transcribed together. Moreover, many miRNAs
are located within the introns of other genes and are often
transcribed together with the host genes. To predict TFBS
in these cases, we used the promoter of the first miRNA in
50 for the miRNAs in a cluster and the promoter of the
host gene for the miRNAs in genes.

miR–target gene relation
There are several major miRNA–target gene prediction
databases including TargetScan, PicTar and miRanda (25).
These predictions have different strengths andweaknesses in
terms of specificity and sensitivity (26,27). Analysis of
protein-level changes after miRNA knockout and transfec-
tion shows that TargetScan and PicTar are more accurate
(28,29). We used TargetScan Release 5.1 as the primary
database for miRNA target gene prediction, since
TargetScan considers sequence conservation and is con-
stantly updated, and PicTar as the supporting database.
This is also comparable to the use of tfbsConsSites as the
primary database for TF–target gene and target miRNA
prediction.We then used matrices to store binary regulatory

relationships between TF, miRNA and genes and used
matrix operations for efficient search of candidate FFLs
and calculation of other statistics such as the number of
TF binding sites and total binding affinity scores.

Gene and miRNA expression data sets

We downloaded data sets with both mRNA and miRNA
expression profiles with normal and cancer samples for the
same cancer type from GEO (30) and ArrayExpress (31).
We utilized mRNA and miRNA expression profiles that
were either from the same samples (paired) or different
samples (unpaired). The data set include liver cancer
(hepatocellular carcinoma), kidney cancer (renal cell
carcinoma), prostate cancer, testicular cancer (germ cell
tumors) and two independent non-small cell lung cancer
(NSCLC) cohorts (32–38). See Supplementary Table S1
for details on the data set, including sources, platforms
and sample sizes.

Computing differential expression and gene set enrichment
We wrote modules in R-programming language to handle
both miRNA and gene expression data with control and
disease samples. We first normalized expression data and
filtered out low-expression gene or miRNA probes by a
specific low-expression cutoff value, so that >50% of the
probes were kept, whose expression values are larger than
the cutoff value in >50% samples. We followed standard
analysis methods to identify differentially expressed
miRNAs and genes as well as regulating TFs or
miRNAs whose target miRNAs or genes are enriched in
differentially expressed gene lists with P< 0.05. The t-tests
or paired t-tests were used to identify a gene or miRNA’s
differential expression between two sample groups

Figure 1. dChip-GemiNI workflow for integrated network and expression analysis. We construct candidate TF–miRNA–gene network using
different databases (Step 1), obtain gene and miRNA expression profiles from different studies (Step 2), select significant FFL motifs through
integration of network motifs and expression data (Step 3) and further validate the results (Step 4). See Materials and Methods section for details.
Step 3 shows a typical TF–miRNA–gene FFL. bs: binding score; rp: enrichment P-value; ep: differential expression P-value.
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(e.g. normal versus cancer), and the nominal P-values
were stored as NMS factors for subsequent permutation
analysis. We used Fisher’s exact test on the frequency
tables of TF or miRNA target genes versus up/down/no
change genes to compute P-values for the enrichment of
target genes in differentially expressed genes or miRNAs.
Our methods are applicable to any type of miRNA and
gene expression data with appropriately formatted data
files, sample information and gene information files.

Defining the significance of FFLs altered in cancer

NMS and FDR
We integrated the statistics from expression data analysis
with network structure information into a NMS for candi-
date FFLs. For each candidate, FFL consisting of a TF, a
miRNA (miRbelow) regulated by the TFand their common
target genes, we computed its NMS as a product of bs, the
binding affinity score from target prediction; ep, the

differential expression P-value from the t-test of two group
of samples; and rp, the enrichmentP-value from the Fisher’s
exact test to assess a target gene set’s enrichment in differ-
entially expressed genes or another target gene set (Figure 2).
The TF–gene, miR-gene and TF–miR links in an FFL are
represented by both the binding score bs and target enrich-
ment score rp in the NMS calculation.We used subscripts to
indicate the node, link or other information for each scoring
factor (Figure 2), e.g. rpTFgenejdiffgene refers to the enrichment
P-value of TF-targeted genes (TFgene) in differentially
expressed genes (diffgene) (epgene< 0.05). Other relations,
such as TF to miR (TFmiR) and miR to gene (miRgene)
are represented in similar way as shown in Figure 2. A vari-
ation of bs (binding score), rbs (relative binding score), was
defined as the ratio between the median binding score of the
differentially expressed targets of a TF or miRNA and the
median binding scores of all the targets of theTFormiRNA,
and it weights more in the total score if differentially

(a) (c)

(b) 

5’ promoter

5’ promoter

MYC

rpTFmiR|diffmiR
bsTF|miR, rbsTF|miR

Example computing NMS and NMS p value
using MYC and miR-17 in kidney cancer

rpTFgene|diffgene,
rbsTF|gene

3’ UTR

rbsmiR|gene
rpmirRgene|diffgene

miR-17

genes

epmiR

epTF
rpTFgene|miRgene

miR-17

miR-17

eulavnoitpircseDrotcaF
rpTFmiR|diffmiR       Enrichment p between MYC target miRs and differential miRs 0.24            
bsTF|miR                 MYC TFBS score on miR-17 promoter                                                     2.97            
rbsTF|miR               Relative MYC TFBS score on miR promoter (differential miRs vs all miRs)       1.00            
epTF                        510.0+eulavplaitnereffidCYM
epmiR                      100.0+eulavplaitnereffid71-Rim
rpTFgene|miRgene  Enrichment between MYC target genes and miR-17 target genes                    2.64e-5
rpTFgene|diffgene   Enrichment between MYC target genes and differential genes      +0.042
rbsTF|gene             Relative MYC TFBS score on gene promoter (differential genes vs all genes)  1.00
rbsmiR|gene           Relative miR binding score on gene 3’ UTR (differential genes vs all genes)     1.00
rpmiRgene|diffgeneEnrichment between miR-17 target genes and differential genes                      -0.0057

NMS               Network motif score  =  f(bs, rbs, ep, rp) 
NP                             0001snoitatumrepforebmuN
PNMS             1000 maxT permuted MYC/miRs NMS using permuted gene/miR expression
ONMS            Observed MYC/miR-17 NMS using observed gene/miR expression                 161.97
NPNMS>ONMS        Number of PNMS larger than ONMS                                 45
NMS p             NMS p value = (NPNMS>ONMS) / NP 0.045
S                     Max(NMS p, rpTFgene|miRgene)                                                               0.045
FDR                Compute FDR by using network and expression permutation                           0.028

Figure 2. Computation of NMS and FDR with multiple scoring factors. (a) Computing NMS for the FFL of MYC and miR-17 using different
scoring factors. (b) The list of scoring factors and example values and results. The±signs indicate up/down-regulation of single or enriched genes.
(c) Left: the distribution of NP (1000) maximal permutated NMS statistics (PNMS); right: the distribution of the observed NMS from all FFLs
involving MYC (ONMS). With 1000 permutations, there are 45 PNMS larger than the observed NMS of MYC-miR-17 FFL, resulting in a
permutation P=0.045. The P-values for all TF–miRNA FFLs can be computed similarly. The NMS P-values are combined with common
target enrichment P-values during network permutation to further compute FDR. See Materials and Methods section for details.
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expressed targets also have higher sequence binding score.
The P-value components ep and rp are converted from
P-values linearly as 2 � P-value, which ranges between
1 and 2 and gives linear weights to TF and miRNA enrich-
ment or differential expression.

Finally, the NMS of a FFL is defined as the product of
two components:

NMS ¼ f bs,ep,rpð Þ ¼
Y
ðbsTFjmiR,rpTFgenejmiRgeneÞ�Y

ðepTF,epmiR,rpTFmiRjdiffmiR,rpTFgenejdiffgene,

rpmiRgenejdiffgene,rbsTFjmiR,rbsTFjgene,rbsmiRjgeneÞ

The first component is based on the candidate FFL
network and does not change for different expression data
set. It is computed using the TF–miRNA binding score
(bsTFjmiR), as well as the enrichment P-value for TF and
miRNA common target genes (rpTFgenejmiRgene), which
checks whether the TF and miRNA share significant
number of target genes by Fisher’s exact test. Such enrich-
ment indicates that they are more likely to interact to
regulate a set of common genes in specific pathways. The
second component ofNMS is based on both expression data
and the candidate FFL network. It is computed using ep, rp,
bs and rbs associated with nodes (genes and miRNAs) and
edges (regulatory relationship) in the FFL network.

Assessing the NMS significance by permutation
With the NMS statistics for all candidate FFLs, we then
estimated their significance by comparing them with the
null distributions formed by randomly permuting the
sample group labels of expression data set and the regu-
latory network structure. We first computed NMS permu-
tation P-values by permuting sample group labels. For
each TF (MYC as an example in Figure 2c), we
computed the distribution of the maximal NMS statistic
among all the FFLs involving the TF using the permuted
data sets and used this distribution as the MaxT null dis-
tribution. The permutation P-value for the NMS of a FFL
involving this TF and a miRNA is defined as the propor-
tion of permutated maximal NMS statistics (PMNS) for
this TF larger than the observed NMS (ONMS): NMS
P-value= (NPNMS>ONMS)/Np, where Np is the number
of permutations. We then computed empirical median
FDR values at different P-value cutoffs by comparing
the number of filtered FFLs in the original and in the
permuted regulatory network. Supplementary Figure
S2b shows the relationship between FDR and cutoff of
the S score, defined as Max(TF–miRNA common target
enrichment P-value, NMS P-value) to filter for significant
FFLs. The figure shows that FDR decreases as S cutoff
decreases. We then converted S scores to FDR for all
FFLs using data set-specific relation between S and FDR.

RESULTS

dChip-GemiNI identifies significant TF–miRNA FFLs
altered in human cancers

A detailed example of computing NMS and FDR for a
well-known FFL consisting of MYC and miR-17 (8), in

kidney cancer, is shown in Figure 2. It obtains a significant
NMS P< 0.05 and FDR <0.05 for the kidney cancer data
set. We visualize significant FFLs identified by the
GemiNI analysis in a summary plot (Figure 3). The plot
highlights top TFs STAT1, MYC and USF1 (Figure 3a)
and top miRNAs miR-15a, miR-16 and miR-20b
(Figure 3d) as the regulators forming FFLs that account
for a large proportion of transcriptome changes in kidney
cancer. The plot also allows for a quick identification of
other significant FFLs as well as involved TFs and
miRNAs (Figure 3c), helping construct specific biological
hypotheses on their expression changes and roles in a
cancer type. Other examples of significant FFLs are
available in the summary plots of Supplementary File S1.
Both NMS P-value and TF–miRNA common target

enrichment P-value are essential in selecting significant
FFLs altered between normal and cancer. Venn diagrams
(Supplementary Figure 7a and b) show that thresholding
TF–miRNA common target enrichment P-value alone
gives rise to more than 4000 significant FFLs (enrichment
P< 0.05, FDR< 0.1 compared to network permutation). In
contrast, thresholding NMS P-value gives much focused
FFLs (approximately 200). Using NMS P-value and
TF–miRNA common enrichment P-value together
(as S score=max of the two P-values) will call significant
FFLs as their intersection: around two-third of the FFLs
from the NMS P-value cutoff and a very small portion of
FFLs from the enrichment P-value cutoff. Although FFLs
with significant enrichment of TF–miRNA common targets
are independent of expression data set, the S-filtered FFLs
depend on expression data and cancer-specific alteration of
FFLs (Table 1).
We applied dChip-GemiNI to six cancer data sets with

both gene and miRNA expression data in normal and
cancer samples and identified significant FFLs. They
include data sets for liver, kidney, prostate, germ cell
tumors and two independent data sets of non-small cell
lung cancer (Supplementary Table S1). We also included
tables of significant FFLs and their common target genes
in Supplementary File S2 for the kidney cancer data. The
FFLs with significant FDR were used in the downstream
analysis and literature and computational validation.

Validation of significant FFLs for their roles in cancer

Our literature search identified only six experimentally
validated miRNA-mediated FFLs in human cancers
(Supplementary Table S6), of which dChip-GemiNI
identifies one FFL (E2F1 with miRNA-106a/93/25) as
significant (FDR< 0.1) in lung and liver cancers. Our pro-
cedure missed some validated FFLs due to the lack of
known TF motifs in our data set. Since very few experi-
mentally validated FFLs are known in cancer, we
validated the significant FFLs in several innovative ways
in the absence of any gold standard set of FFLs in cancer.
We utilized the TransmiR database (39) that curates TF

-miRNA regulation information from the literature as
partial evidence for FFLs. We found evidence supporting
multiple significant FFLs (FDR< 0.1) formed by TFs
MYC, MYCN, E2F1, E2F3, SP1, EGR1 and STAT3
with several miRNAs (see Supplementary Table S2).
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Next, we hypothesized that even when the functional
role of a particular FFL is not known in a given cancer
type, both the involved TF and miRNA could have been
studied together, or functional roles of the constituent TF
and miRNA may have been characterized extensively, if
the involved TFs and miRNAs play important roles in
multiple cancer types. Therefore, we performed automatic
literature mining of PubMed abstracts for combined
keywords of a TF or miRNA gene name or aliases and
cancer-related terms (‘neoplasms’, ‘cancer’, ‘tumor’, ‘car-
cinoma’, ‘oncogenes’). The general cancer terms instead of

specific cancer type names were used in the search to relate
the literature results to top-ranked TFs and miRNAs
across multiple cancer types. We found that 3.2% of all
significant FFLs (FDR< 0.1) from kidney cancer
co-mentioned in at least one publication, compared to
only 1.2% of all TF–miRNA pairs co-mentioned. Thus,
there is a 2.67-fold enrichment in literature co-occurrence
for significant FFLs.We also found that there is a 1.51-fold
enrichment in literature co-occurrence for significant FFLs
identified by TF–miRNA common target enrichment
P-value only without using expression data, compared to

Figure 3. The summary bubble-bar plot from dChip-GemiNI analysis of the kidney cancer data, highlighting the amount of differentially expressed
genes explained by FFLs, TFs and miRNAs. TFs on the top (a) and miRNAs on the right (d) are ranked by the percentage of differentially
expressed genes explained by all the significant FFLs involving a TF or miRNA (the height of bars). The top 20 TFs and miRNAs are displayed (for
complete plots, see Supplementary File S1). The bubbles in the lower left panel (c) correspond to TF–miRNA FFLs with FDR <0.1 from the kidney
cancer data. The bubble size indicates the number of differentially expressed FFL target genes, and color indicates the FFL significance. The
cumulative percentage of differentially expressed genes explained by TFs and miRNAs is also shown in the barplots (a and d). The parenthesis
around a TF or miRNA name indicates that its differential expression is not used in NMS due to missing data or low-expression filtering (other
scoring factors are still used). TF and miRNA name color: red, expression is upregulated in cancer; blue, downregulated; black, no change. The
following target enrichment analyses are called at Fisher’s exact test P< 0.05. enr_up (enr_down): TF and miRNA common target genes are enriched
in upregulated (downregulated) genes; TF_gene_enr_up (TF_gene_enr_down): TF target genes are enriched in upregulated (downregulated) genes;
TF_miR_enr_up (TF_miR_enr_down): TF target miRNAs are enriched in upregulated (downregulated) miRNAs; miR_gene_enr_up
(miR_gene_enr_down): miRNA target genes are enriched in upregulated (downregulated) genes; Mut_enr: TF target genes and miRNA target
genes are enriched in each other; enr_canpath: TF and miRNA common and differentially expressed target genes are enriched in KEGG cancer
pathways.
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a 2.17-fold enrichment for FFLs identified using NMS
P-value only. This supports the value of using expression
data through NMS in selecting cancer-specific FFLs.

We also counted the number of cancer-related papers
for each TF and miRNA (Figure 4a and Supplementary
File S3). We found several TFs and miRNAs which have
been studied in a large number of cancer publications due
to their important and diverse roles in cancer: TP53 (more
than 50 000 papers), NFKB1 (more than 30 000), ESR1
and MYC (approximately 20 000), miR-21 (more than
300 papers), miR-17 (approximately 200) and miR-16
(more than 100). The median value of the cancer-related
papers is 233 for all the TFs and 9 for all the miRNAs.

We expected that the involvement of miRNAs and TFs
in cancer would be reflected by both the number of cancer
studies in the literature and their ranking in expression
data analysis. We first assessed the correlation between
TFs and miRNAs’ differential expression ranking and
their occurrence in cancer-related PubMed abstracts. We
ranked miRNAs and TFs by their differential expression
P-values in each cancer data set and computed their
average ranks in the six cancer data sets (Figure 4b and
Supplementary File 4). We found a strong correlation
between the number of cancer-related papers and the
average rank of each miRNA (correlation=�0.72,
Figure 4c; higher rank is associated with more papers)

Table 1. The top-ranked TFs and miRNAs involved in TF–miRNA FFLs across six cancer data sets

liver_cancer
GSE22058

kidney_cancer
GSE16441

prostate_cancer
GSE21032

germ_cell_tumor
GSE18155

lung_cancer
GSE18805

lung_cancer
GSE2088_
E-TABM-22

Average
rank

Number of
presence

TFs
USF1 2 3 5 9 8 2 4.83 6
ARNT 3 5 6 9 6 1 5.00 6
MYC 4 2 3 9 21 7 7.67 5
MAX 18 8 8 9 14 6 10.50 6
AHR 6 4 14 9 5 41 13.17 5
CREB1 5 71 2 1 1 5 14.17 5
IKZF1 9 29 21 9 14 3 14.17 4
MYCN 41 10 11 9 20 19 18.33 4
TFAP2C 29 25 11 9 20 20 19.00 2
SREBF1 16 9 52 9 26 8 20.00 4
MYCN 39 8 15 43 32 8 24.17 3
FOSB 17 39 27 42 18 21 27.33 2
TFAP2C 43 38 16 7 29 38 28.50 2
NR3C1 24 26 51 5 39 26 28.50 1
SREBF1 15 17 62 47 20 12 28.83 3
TFAP2B 26 35 17 10 40 48 29.33 2
PPARG 19 37 62 42 12 6 29.67 3
MYB 12 21 58 47 10 32 30.00 2
MZF1 70 43 13 29 10 15 30.00 3
JUND 17 33 50 42 18 21 30.17 2

miRNAs
hsa-miR-17 3 5 5 1 4 3 3.50 6
hsa-miR-16 3 1 5 9 3 1 3.67 6
hsa-miR-195 2 3 2 9 2 4 3.67 6
hsa-miR-15a 1 1 3 9 1 8 3.83 6
hsa-miR-20a 3 5 5 9 4 6 5.33 6
hsa-miR-130a 10 13 14 3 15 7 10.33 6
hsa-miR-27a 5 9 9 9 8 26 11.00 5
hsa-miR-19a 11 6 6 9 6 33 11.83 5
hsa-miR-497 24 4 1 9 2 33 12.17 4
hsa-miR-106b 6 8 11 9 16 33 13.83 5
hsa-miR-106a 4 35 6 38 7 1 15.17 4
hsa-miR-19a 8 7 4 38 6 28 15.17 4
hsa-miR-20b 36 2 6 38 7 8 16.17 4
hsa-miR-23a 33 8 9 26 10 29 19.17 3
hsa-miR-106b 7 9 12 38 14 51 21.83 4
hsa-miR-93 7 9 12 38 14 51 21.83 4
hsa-miR-124 12 18 31 38 23 10 22.00 3
hsa-miR-424 6 19 52 17 11 31 22.67 4
hsa-miR-92a 10 14 7 4 68 34 22.83 4
hsa-miR-15b 19 15 11 38 13 51 24.50 4

In each cancer data set, TFs and miRNAs are ranked by the percentage of differentially expressed (DE) genes explained by all the significant FFLs
(FDR< 0.1) involving a TF or miRNA (similar to Figure 3). The tables order TFs and miRNAs by their average ranks in the six cancer data sets. In
a data set, the TFs or miRNAs with the same percentage of FFL-explained DE genes are ranked the same. Analysis of germ cell tumor results in
only a few TFs and miRNAs associated with significant FFLs, and we rank the rest TFs and miRNAs at the same low rank order. Number of
presence: the number of times that a TF or miRNA is present in the top 20 of individual data sets. See Supplementary File S4 for more information.
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and a moderate correlation for TFs (�0.30). The correl-
ations are smaller when using the ranks in individual
cancer data sets compared to using the average ranks
across the six cancer data sets. The high correlation for
miRNAs suggests that the miRNA’s differential expres-
sion ranks averaged across cancer types can identify
miRNAs important in cancer.
Next, we compared different analysis methods of

ranking cancer-related TFs and miRNAs based on expres-
sion data, including differential expression analysis, target
enrichment of differentially expressed genes and miRNAs
and the FFL model. For differential expression and target
enrichment analysis, we ranked TFs and miRNAs by
P-values. For the FFL model, TFs and miRNAs were
ranked by the number of differentially expressed FFL
target genes in their associated FFLs with FDR< 0.1.
We divided the miRNAs and TFs into four quarters
based on their average ranks in each method (lower
quarters for high-ranked miRNAs and TFs) and then

plotted the median number of papers in each quarter. All
the methods are able to associate high-ranked miRNAs
and TFs with more cancer-related papers (Figure 4d and
e). Although the miRNA differential expression method
(triangles) better distinguishes the first quarter from the
other quarters, the FFL model performs slightly better in
selecting cancer-related miRNAs in the first quarter of
ranked miRNAs (Figure 4d). Moreover, the FFL model
performs significantly better than the other methods in
ranking cancer-related TFs in the first quarter
(Figure 4e). In summary, the FFL model performs com-
parably or better in identifying top cancer-related miRNAs
or TFs compared to existing approaches.

FFL-based integrative analysis is more robust

We found that for the same biological process or disease,
results from the FFL model are more comparable between
data sets than those from traditional methods such as

Figure 4. Validation of top TFs and miRNAs ranked by different analysis methods. (a) The top 10 miRNAs based on the number of cancer-related
papers from literature mining. Asterisks indicate oncomiRs summarized in reviews (2,3,40,41); Hash indicate oncomiRs from the SBI OncomiR
collection (http://www.systembio.com/services/microrna/oncomir-collection). See Supplementary Files S3 and S7 for details. (b) The top 10 miRNAs
by the average rank of differential expression P-values from the six cancer data sets. See Supplementary File S4 for the complete list. (c) The scatter
plot between the number of cancer-related papers and the average rank of miRNAs by differential expression. Higher rank (lower rank number) is
correlated with more papers, so the correlation is negative. The red circles are known oncomiRs from SBI. The top-ranked miRNAs could also
suggest novel oncomiR candidates, such as the three leftmost black points corresponding to miR-142-5p, miR-130a and miR-96 (indicated in the
large circle). (d) The miRNAs are first ordered by their average ranks in the six cancer data sets using each analysis method and then divided into
four quarters (X-axis). Then, the median number of cancer-related papers of the miRNAs in each quarter is plotted (Y-axis) for different methods.
The gray horizontal line is the median number of papers for all miRNAs. (e) The similar plot as (d) for TFs.
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differential expression or TF/miRNA target enrichment.
For example, the correlation between TF or miRNA
ranks of the two lung cancer data sets is the highest
using the FFL model (Supplementary Table S3). In
addition, the FFL analysis identifies the involvement of
the miR-15/miR-17 families in both lung cancer data sets
(Supplementary Figure S3), which is less prominent from
traditional analysis. The results described here and in the
previous section confirm the robustness of integrative
analysis of gene and miRNA expression data with
network motifs.

This is important as the number of differentially
expressed genes, target-enriched TFs or miRNAs vary
across the cancer expression data sets, possibly due to
their cancer type, sample size and platform characteristics
(Supplementary Table S4 and Supplementary File S4). The
different data sets for the same cancer type can also result
in differences. For instance, the gene and miRNA expres-
sion data are paired in lung cancer data set 1 (GSE18805),
while they are from two studies (GSE2088 and E-TABM-
22) in lung cancer data set 2. The lung cancer data set 2 has
more samples, fewer differentially expressed genes/TFs and
miRNAs, but more miRNAs with enriched target genes
than the lung cancer data set 1 (Supplementary Tables S1
and S4). For some genes or miRNAs, such as the TF
ARNT, the direction of expression change is opposite
between the two lung cancer data sets (Supplementary
File S4). In general, more differentially expressed or
target-enriched genes and miRNAs lead to more TFs and
miRNAs identified by significant FFLs (Supplementary
Table S4 and Supplementary Figure S4).

Significant TF–miRNA FFLs explain �20% of
transcriptome changes in human cancers

To estimate transcriptome changes between normal and
cancer that are likely caused by significant FFLs, we
identified the target genes of all the significant FFLs in a
data set and computed the ratio of differentially expressed
FFL target genes to all differentially expressed genes. In
the kidney cancer data, the FDR cutoffs of 0.05 and 0.1,
respectively, identify approximately 230 and approxi-
mately 430 significant FFLs, which likely cause 18 and
23% of expression changes (Figure 3b). In addition, the
FFL target genes of the top 20 TFs and top 20 miRNAs,
ranked by the percentage of expression changes explained
by all the significant FFLs associated with a TF or
miRNA, account for �17% of the differentially expressed
genes in the kidney cancer data (the cumulative blue
curves in Figure 3a and d).

For all the cancer data sets, there are on average 130 and
270 significant FFLs at the FDR cutoffs of 0.05 and 0.1,
respectively, which explain on average 13 and 19% of
expression changes in a data set. The FFL target genes
of the top 20 TFs and top 20 miRNAs account for �15%
of the differentially expressed genes on average across the
data sets. Interestingly, FFLs with FDR <0.1 can explain
20–23% of the expression changes for most of the cancers,
but only 3% of expression changes for germ cell tumor,
possibly because the small sample size of this data set

leads to much fewer significant FFLs (Supplementary
Table S1).
In comparison, we found that on average significant

TFs or miRNAs explain 50–70% of the expression
changes when using TF–target gene or miRNA–target
gene enrichment analysis. This can be due to the fact
that each TF or miRNA usually has hundreds of target
genes, but the number of target genes of an FFL (defined
as the common targets of the involved TF and miRNA) is
usually less than 100. In effect, the FFL model narrows
down the list of potential target genes of candidate
regulators for further validation.

Meta-analysis of multiple cancer types identifies common
and cancer-specific FFLs

We identified significant FFLs and involved TFs and
miRNAs that are common and distinct across multiple
cancer types at the FDR threshold of 0.1. Top-ranked
FFLs that are common across the six cancer data sets
consist of TFs USF1, ARNT, MYC, MAX, AHR,
CREB1 and miRNAs mir-15a, miR-16, miR-17, miR-20a
and miR-195 (Table1; see Supplementary File S4 for the
complete list). Most of the top miRNAs belong to two
families of miRNA clusters, the miR-15/16/195/424/497
family and miR-17-5p/20/93.mr/106/519.d family, located
on chromosomes 3, 7, 13, 17 and X (see Supplementary
Table S5 for details). These miRNA clusters are potentially
co-regulated by dozens of TFs including ARNT, MYC and
CREB1. Supplementary Figure S5 shows the regulatory
relationships among them.
The miR-15 and miR-17 families have been experimen-

tally verified to be oncomiRs and have tumor suppressor
or oncogene functions in cancer [Supplementary Figure S6
(2,3,40,41)]. In our analysis, the expression levels of most
miR-15 and miR-17 family members increase in most
cancer types relative to normal, and there is clear expres-
sion correlation in the miRNA clusters (Supplementary
File S5). miRNA clusters and miRNA families are
widely distributed in the genome: there are over 200
miRNAs forming over 60 physical clusters on chromo-
somes and over 200 miRNAs belonging to approximately
100 miRNA families. Therefore, in our view, the identifi-
cation of miR-15/17 cluster family is likely not due to the
bias introduced by computational methods for target
identification (e.g. the entire miRNA family sharing
largely overlapping target genes).
The target gene functions of top-ranked FFLs are diverse

and often enriched of cancer-related GO terms and
pathways. For example, significant GO terms in the differ-
entially expressed target genes of the MYC/miR-17 FFL in
kidney cancer include transcriptional regulation, apoptosis,
cell cycle arrest, RAS signaling and cytokine production
(Table 2). Significant GO terms for other selected FFLs
involving MYC, CREB1, SP1 and mir-15/17 in several
cancer types are listed in Supplementary File S6.
We also identified cancer type-specific FFLs and

associated top TFs and miRNAs (Table 1 and Supple-
mentary File S4). For example, OCT1/POU2F1 ranks as
number 4 in lung cancer data 1 but ranks lower in other
cancers; STAT1 ranks as number 1 in kidney cancer, while
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its average rank across the data sets is not high. For
miRNAs, miR-548d-3p ranks within top three in germ cell
tumor but lower in other cancers. These results generate
novel hypotheses to study cancer type-specific functions of
top-ranked FFLs, TFs and miRNAs and can be queried at
http://www.canevolve.org/dChip-GemiNi.

DISCUSSION

Transcriptome changes are an important mediator in
complex diseases such as cancers, which have multiple
biological hallmarks (42). Among many genetic regula-
tors, TFs and miRNAs frequently form FFLs and other
network motifs to regulate gene expression in a combina-
torial manner. Such regulation may be disrupted in cancer
due to mutations and chromosome abnormalities. Success
in treating cancer patients calls for better understanding of
common and cancer type-specific regulatory processes in
cancer cells.
Here, we have developed dChip-GemiNI, a novel

analysis approach integrating FFL network structures
with gene and miRNA expression data, and identified sig-
nificant TF–miRNA FFLs that likely cause �20% of the
transcriptome changes. Conventional analysis methods
focus on differentially expressed genes and miRNAs
between biological processes or disease states, but expres-
sion changes may not be detectable for many TFs and
miRNAs, whose expression level can be low and their

effects can be exerted by other means such as protein phos-
phorylation or localization. However, these effects may be
probed through changes in the network of the regulated
genes. Gene set and pathway enrichment analyses method
partially utilize such information via TF or miRNA target
gene sets. dChip-GemiNI overcomes limitations from trad-
itional analysis methods by combining multiple data
sources to rank network motifs such as FFLs by their
explanatory power to account for transcriptomic changes.
We have shown that this FFL-based modeling can identify
TF and miRNA regulatory pathways commonly altered
across cancer types and do so more consistently than
existing analysis approaches. Our results confirm the roles
of miRNA-mediated pathways in human cancers and
generate novel biological hypotheses on specific
TF–miRNA FFLs as altered regulators.

TF–miRNA FFLs may be common drivers of pathogenesis
across multiple cancer types

We have identified common TFs and miRNAs associated
with significant FFLs across cancer types. For example,
MYC, ARNT and USF1 are ranked within the top 20 TFs
in all the cancer types except the germ cell tumor (Table1).
MYC has multiple roles in cancer and is known to involve
in miRNA regulation (3,41,43–45). MYC mutation or
dysregulation can cause a cascade of expression changes
of miRNAs and genes and lead to abnormal cell cycle and
apoptosis functions (Supplementary Figure S6). Our study

Table 2. Significantly enriched GO terms in the differentially expressed target genes of the MYC and miR-17 FFL in kidney cancer

Category Term Count P-value FDR %

GOTERM_BP_FAT GO:0006350�transcription 20 6.75E-05 0.098527
GOTERM_BP_FAT GO:0045449�regulation of transcription 20 0.0011513 1.667907
GOTERM_BP_FAT GO:0016265�death 9 0.0041554 5.898623
GOTERM_BP_FAT GO:0006917�induction of apoptosis 6 0.0058396 8.195772
GOTERM_BP_FAT GO:0012502�induction of programmed cell death 6 0.005916 8.298779
GOTERM_BP_FAT GO:0007050�cell cycle arrest 4 0.0061271 8.582609
GOTERM_BP_FAT GO:0046578�regulation of Ras protein signal transduction 5 0.0069286 9.653135
GOTERM_BP_FAT GO:0001816�cytokine production 3 0.0120185 16.18359
GOTERM_BP_FAT GO:0051056�regulation of small GTPase-mediated signal transduction 5 0.0129273 17.30217
GOTERM_BP_FAT GO:0008219�cell death 8 0.0142681 18.92731
GOTERM_BP_FAT GO:0006357�regulation of transcription from RNA polymerase II promoter 8 0.0150876 19.90583
GOTERM_MF_FAT GO:0005083�small GTPase regulator activity 6 0.0036058 4.2172
GOTERM_MF_FAT GO:0030695�GTPase regulator activity 7 0.0039461 4.606721
GOTERM_MF_FAT GO:0060589�nucleoside–triphosphatase regulator activity 7 0.0043937 5.116735
GOTERM_MF_FAT GO:0030528�transcription regulator activity 13 0.0090264 10.25106
GOTERM_MF_FAT GO:0003677�DNA binding 17 0.0094193 10.67461
GOTERM_MF_FAT GO:0003700�transcription factor activity 10 0.0098228 11.10768
INTERPRO IPR003070:Orphan nuclear receptor 2 0.0096936 11.07411
INTERPRO IPR001331:Guanine–nucleotide dissociation stimulator, CDC24, conserved site 3 0.0177529 19.4124
KEGG_PATHWAY hsa05214:Glioma 3 0.0142992 12.54349
PIR_SUPERFAMILY PIRSF002524:nerve growth factor IB-like nuclear receptor 2 0.0052646 3.816163
SP_PIR_KEYWORDS Transcription regulation 20 9.40E-06 0.010708
SP_PIR_KEYWORDS Transcription 20 1.29E-05 0.014701
SP_PIR_KEYWORDS Phosphoprotein 37 0.0006004 0.681797
SP_PIR_KEYWORDS Nucleus 26 0.0007915 0.897858
SP_PIR_KEYWORDS DNA binding 15 0.0017858 2.015405
SP_PIR_KEYWORDS Guanine–nucleotide releasing factor 4 0.0067022 7.373974
SP_PIR_KEYWORDS transcription factor 3 0.0181031 18.78729
SP_PIR_KEYWORDS Zinc finger 12 0.0181405 18.82247
UP_SEQ_FEATURE Compositionally biased region:Ser-rich 8 0.0003965 0.50712

GO terms are filtered by FDR< 0.2 and GO analysis are performed by the DAVID functional annotation Web server.
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confirms that FFL networks involving MYC and the
miR-15 and miR-17 families are potential common
drivers of malignant progression across cancer types. We
show that MYC regulates multiple top-ranked miRNAs
associated with significant FFLs, including the miRNA
clusters in the miR-15/16/195/424/497 and miR-17-5p/
20/93.mr/106/519.d families (Supplementary Figure S5).

In addition, our analysis ranks ARNT (aryl hydrocar-
bon receptor nuclear translocator) as number 2 in prostate
cancer and number 4 in liver cancer (Table 1). ARNT has
recently been shown to associate with tumor growth and
progression of liver cancer (46). Our analysis ranks
CREB1 (cAMP responsive element binding protein 1) as
one of the top TFs by average rank and number 1 in the
lung cancer data set 1 and germ cell tumor. Recent studies
have shown that CREB is involved in tumor initiation,
progression and metastasis (47), and it has growth
suppression or cancer inhibition function in lung and
prostate cancers (48,49). However, CREB’s regulation of
miRNAs in cancer has not been well studied and our
results provide a new hypothesis of CREB-miRNA
network’s alteration in cancer and potential miRNA
partners.

Modeling FFLs better identifies potential cancer
regulatory network

We have shown that modeling TF–miRNA FFLs helps to
better identify cancer-related TFs, as suggested by the
higher number of cancer-related papers in top-ranked
TFs compared with the methods of differential expression
and target enrichment. TFs’ mRNA expression level is
usually low, their functions are frequently altered at the
protein interaction or modification level and they often
form regulatory modules. These factors hinder simpler
approaches to study TF functions in cancer using gene
expression data. In evaluating TFs, the FFL model inte-
grates information from both mRNA and miRNA expres-
sion through the network structure of target genes and
improves the cancer relevance of the TF ranking. For
example, MYC and CREB1 are not among the top TFs
according to differential expression or target enrichment
analysis (Supplementary File S4), but through FFLs they
are connected to oncomiRs in the miR-15 and miR-17
families, many of which are top-ranked miRNAs by dif-
ferential expression or miRNA target gene enrichment
across cancer data sets. Therefore, in the FFL model,
MYC and CREB1 are ranked high as common
cancer-related TFs because their associated significant
FFLs can explain a high percentage of expression changes.

Future improvement of network and expression data
integration

Although the analysis results from dChip-GemiNI shows
consistency and specificity across multiple data sets, there
are areas of improvement in follow-up work. First, we can
improve the target prediction and candidate regulatory
network by including gene targets identified from
genome-wide profiling of TFs using chromatin immuno-
precipitation followed by microarray hybridization or
next-generation sequencing. Second, the proposed

methodology is not limited to one type of network
motifs, such as FFL. We can study other common
network motifs, such as feedback loops consisting of one
miRNA and one TF, which often form bistable switches in
development and differentiation. Third, we may consider
correlations between TF, miRNA and gene expression
when each sample has both miRNA and gene expression
data. If such correlations are available for both control and
disease samples, correlation changes between control and
disease can be incorporated into the scoring of network
motif models to identify altered regulatory network. As
genomics studies of cancer generate more large data sets
of multiple data types, integrative analysis methods will
play ever-growing roles in understanding the causes of
cancer and revealing novel drug targets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–6, Supplementary Figures 1–7
and Supplementary Files 1–8.
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