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Abstract While the RNA interference (RNAi) mechanism has
only been discovered a decade ago, RNAi is now often used to
study gene function by sequence-specific knockdown of gene
expression. However, it is still unknown whether introduction
of silencing-inducing transgenes alters the transcriptome. To ad-
dress this question, genome-wide transcriptional changes in si-
lenced and non-silenced backgrounds were monitored through
microarray analysis. No significant transcriptional changes were
detected when compared to the non-silenced control. This result
was confirmed by real-time polymerase chain reaction analysis of
genes known to be involved in RNA silencing. In conclusion,
introduction of silencing-inducing constructs does not affect
expression of known transcripts in other genes than in those
homologous to the targeted ones. Consequently, when gene func-
tion is studied by RNAi, the transcriptional changes detected will
specifically be the result of knockout of the gene of interest, at
least for the genes present on the array used in our study.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Determining the function of every gene encoded in the gen-

ome is an important task required to understand the biology of

a particular organism. For many genes, their function is in-

ferred from the phenotypes observed after their mutations.

Countless screens for mutants in a particular pathway have al-

ready been carried out and large libraries of T-DNA or trans-

poson integration lines have been generated (http://

www.arabidopsis.org/links/insertion.jsp) that represent an

important resource for gene disruption in the model system

Arabidopsis thaliana [1]. However, mutation of some genes
Abbreviations: AGO, argonaute; DCL, dicer-like; dsRNA, double-
stranded RNA; Fab, fragment antigen binding; GST, gene-specific tag;
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reaction; RDR, RNA-dependent RNA polymerase; RNAi, RNA int-
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causes lethality or does not result in a clear phenotypic defect

because of redundancy with closely related genes.

Additional tools to deduce gene function have been provided

by the determination of the genome sequence [2]. For instance,

gene function can be predicted based on homology with genes

or conserved domains of known function. Nevertheless, these

postulations still need to be confirmed by a functional assay

or by knocking-out of the gene.

Sequence-specific knockdown of genes can be obtained by

RNA interference (RNAi) [3]. During RNAi, double-

stranded RNA (dsRNA) is formed and, subsequently,

cleaved into approximately 21 nucleotide-long small inter-

fering (si)RNAs that guide a silencing effector complex to

complementary RNA molecules, with degradation of the

target as a result [4,5]. RNAi can be induced efficiently

by introduction of a hairpin construct that can form the

dsRNA intermediate directly with homology to the gene

of interest [6]. Several systems to perform functional analy-

ses using RNAi have been developed [3,6,7] because RNAi

has some important advantages when compared to classical

mutagenesis. For instance, RNAi can be induced at a par-

ticular developmental stage or in particular cells or tissues

when the appropriate promoter is used to drive expression

of the hairpin construct. Therefore, these inducible RNAi

systems also allow the study of genes whose knockdown re-

sults in embryo lethality [8–10].

When exploiting RNAi, phenotypic outcome and transcrip-

tional changes observed are assumed to result from downreg-

ulation of the targeted gene. However, it has not been

investigated whether introduction of a silencing-inducing con-

struct causes transcriptional changes. Therefore, genome-wide

transcriptional changes in a silenced versus non-silenced trans-

genic background were monitored by means of CATMA array

analysis [11]. Silent transgenes without homology to genes en-

coded in the Arabidopsis genome were selected to avoid cosup-

pression and both the silenced and non-silenced backgrounds

were allelic to rule out secondary effects. No transcriptional

changes were detected. This result was confirmed by monitor-

ing mRNA accumulation levels of a subset of genes known to

be involved in RNA silencing in transgenic lines in which

silencing was induced by: (i) the presence of a sense transcript;

(ii) two T-DNAs integrated as an inverted repeat, resulting in

convergently transcribed transgenes; and (iii) a hairpin con-

struct. We conclude that the RNAi machinery is constitutive

and that, consequently, expression of a silencing-inducing con-

struct does not affect the transcription of known genes in a

non-specific manner.
blished by Elsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Plant material and growth conditions
Homozygous and hemizygous Kd27 plants were obtained as de-

scribed previously [12] and by crossing the Kd27 line with a non-trans-
formed Arabidopsis thaliana (L.) Heyhn. C24 plant [13], respectively.
KH15 and KH15d6 have been described previously [14] as well as
P35S:GUS and P35S:GUS+HP [15].

Seeds were surface sterilized, germinated on selective Murashige and
Skoog medium (Sigma–Aldrich, St. Louis, MO, USA), supplemented
with 1% sucrose. Plants were transferred to soil 21 days after germina-
tion and grown at 20 �C, 70% humidity, on a 16-h light/8-h dark cycle
with 110 lmol m�2 s�1 of white fluorescent light.
2.2. Determination of Fab and GUS accumulation levels
Leaf samples were harvested 35 days after germination for analysis

of transgene expression. For determination of fragment antigen bind-
ing (Fab) accumulation levels in homozygous and hemizygous Kd27
plants, protein extracts were prepared from fresh plant material [12].
Total soluble protein content was determined with the BioRad Protein
Assay [16] with bovine serum albumin as a standard and Fab enzyme-
linked immunosorbent assay was performed [17].

To determine b-glucuronidase (GUS) levels in KH15, KH15d6,
P35S:GUS and P35S:GUS+HP plants, protein extracts were prepared
as described [14], total soluble protein content was determined as
above, and GUS activity as described [18]. GUS activity levels were ex-
pressed as units of GUS protein relative to the total amount of total
soluble extracted protein.
2.3. Microarrays
The CATMA v2.2 array used in this study consisted of 23688 fea-

tures, including 22494 unique gene-specific tags (GSTs) from Arabid-
opsis [19], 768 positive and negative control spots (GE Healthcare,
Little Chalfont, UK) and 426 blank spots. Design and synthesis of pri-
mary and secondary GST amplicons have been were described else-
where [19,20]. The GSTs that primarily matched (3 0) exons or the 3 0

untranslated region sequences and occasionally (2.9%) contained in-
tron sequences, were purified and arrayed as described elsewhere
[11]. The CATMA GST array was printed at the VIB Microarray
Facility (www.microarray.be) and consisted of two mega-columns
and 12 mega-rows, resulting in 24 blocks. Each block represented a
set of spots printed with a single and identical print tip. Prior to
hybridization, the slides were washed in 2· saline–sodium phos-
phate–ethylenediaminetetraacetic acid buffer, 0.2% sodium dodecyl
sulfate for 30 min at 25 �C.
2.4. Target labeling and hybridizations
Leaf samples of 35-day-old KH15 and KH15d6 shoots were har-

vested and immediately frozen in liquid nitrogen. Total RNA was pre-
pared from ground frozen leaf material with the TriZol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s pro-
tocol. Five micrograms of total RNA was reverse transcribed to dou-
ble-stranded cDNA and further amplified as described [21] as well as
the subsequent Cy3 and Cy5 labeling, hybridization, post-hybridiza-
tion washing, and scanning [11]. All protocols are available at the
VIB Microarray Facility web site (http://www.microarrays.be) for
Cy3 labeling, Cy5 labeling, hybridization, and scanning.
2.5. Experimental design
The two genotypes were twice hybridized to each other in both direc-

tions, involving two biological and two technical replicates, ensuring
dyes were balanced within genotypes.
2.6. Statistical analysis of the diallel expression data
The expression data were analyzed in two steps: (i) a within-slide

analysis to model the variation associated with spatial (such as grid
layout on the slide) and structural components (such as print order,
differential dye responses to binding, and scanning) and to remove
this as noise; and (ii) a between-slide analysis to estimate the differ-
ences between genotypes and their consistency. Modeling the dye
bias was fitted within the spatial linear mixed model framework
for within-slide analysis with a cubic smoothing spline curve
(spline(intensity)) as implemented in the GenStat [22] menu for
microarray data analysis. Once the corrected log ratios, Mij (where
i indexes the slides and j the probes), were obtained, the differences
between targets were analyzed as implemented in the GenStat
menu.
2.7. Real-time PCR analysis
RNA was extracted with TriZol (Invitrogen) with leaf material of

the same 35-day-old plants used for determination of Fab or GUS
accumulation levels. Total RNA was treated with DNase RQ1 (Prome-
ga, Madison, WI, USA) and subsequently purified with phenol–chlo-
roform extraction. Polyd(T) cDNA was synthesized from 1 lg of
DNaseI-treated total RNA with Superscript II reverse transcriptase
(Invitrogen) and quantified on an iCycler real-time polymerase chain
reaction (PCR) detection system (BioRad, Hercules, CA, USA) with
the qPCR core kit for SYBR Green I (Eurogentec, Seraing, Belgium).
PCRs were carried out in triplicate. Relative expression levels were first
normalized to ACTIN2 expression and then to the respective non-si-
lenced controls. Specific primer pairs were designed with Beacon De-
signer 4.0 (Premier Biosoft International, Palo Alto, CA, USA):
At3g18780/ACTIN2 5 0-GTTGACTACGAGCAGGAGATGG-3 0 and
5 0-ACAAACGAGGGCTGGAACAAG-3 0; At1g48410/AGO1 5 0-
TCTACAGGGATGGAGTCAGTGAGGG-3 0 and 5 0-AGCCTCG
TGTGATGACGCTTCTG-3 0; At3g49500/RDR6 5 0-AGAAACTCA-
TCCCTCCCAAC AG-3 0 and 5 0-CCAACTGCTCATTCGCCAAG-
3 0; At1g01040/DCL1 5 0-GACACCAGA GACACTTCCAATG-30

and 5 0-CCAACTGCTCATTCGCCAAG-3 0; At3g03300/DCL2 5 0-
CCTGGACTATAACCGACATG-3 0 and 5 0-GTGCTTATGGAGAT-
GA TGAGAG-3 0.
3. Results

3.1. The presence of silencing-inducing transgenes does not alter

genome-wide transcript levels

Integration of two T-DNAs as an inverted repeat, resulting

in convergently transcribed transgenes, triggers silencing to

varying degrees [23]. In line KH15, the two inversely repeated

GUS transgenes were separated by a 732-bp palindromic se-

quence, and silencing was efficiently induced. Cre-mediated

deletion of one of the transgene copies in line KH15d6

alleviated GUS silencing [23]. The silenced line KH15 and

the non-silenced control KH15d6 were chosen for genome-

wide analysis of gene expression, because the transgenes were

integrated at the same genomic locus into both lines. There-

fore, effects due to transgene integration could be excluded

and genes differentially expressed after induction of silencing

could specifically be identified.

GUS protein activity was determined in leaf samples and

3.2% and 3.8% residual activity was detected in KH15 when

compared to KH15d6 for the two biological replicates used.

Part of the same samples was utilized for microarray analysis

with CATMA chips. Analysis of normalized gene expression

data was performed with GenStat (see Section 2.6). At the

decision criterion based on an observed fold change in expres-

sion, i.e., >2 in absolute value, combined with a P-value

<0.001, no differentially expressed genes could be identified

(Fig. 1). Further examination of the relative expression of

genes known to be involved in RNA silencing showed no sig-

nificant change in KH15 when compared to KH15d6 plants

(Table 1). Thus, RNA silencing induced by transgenes inte-

grated as inverted repeat does not affect genome-wide expres-

sion of any gene present on the CATMA array nor genes

known to be involved in RNA silencing.

http://www.microarray.be
http://www.microarrays.be


Fig. 1. Volcano plot contrasting the significance (�log10P on the
ordinate) and the magnitude of the expression difference between
KH15 and KH15d6 (log2 on the abscissa). Each cross represents one of
the 22494 genes.

Table 1
Relative expression levels of genes required for RNA silencing and
paralogs in the silenced line KH15 versus the non-silenced control
KH15d6 (ratio)

Gene Code Ratio P-value

AGO1 At1g48410 0.97 0.118
AGO2 At1g31280 1.02 0.410
AGO3 At1g31290 1.00 0.874
AGO4 At2g27040 1.00 0.763
AGO5 At2g27880 1.01 0.640
AGO6 At2g32940 0.99 0.399
AGO7 At1g69440 0.98 0.444
AGO9 At5g21150 0.99 0.200
AGO10/PNH At5g43810 1.02 0.349
DCL1 At1g01040 1.04 0.113
DCL3 At3g43920 1.01 0.378
DCL4 At5g20320 1.00 0.989
HEN1 At4g20910 1.00 0.569
HYL1 At1g09700 0.99 0.264
RDR1 At1g14790 1.00 0.917
RDR2 At4g11130 1.01 0.349
RDR6/SGS2 At3g49500 1.00 0.775
SGS3 At5g23570 1.01 0.735
SDE4 At1g63020 1.00 0.656
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3.2. Validation of microarray data by real-time PCR analysis

To confirm the results obtained with microarray analysis,

real-time PCR was performed on a subset of genes known to

be involved in RNA silencing, namely encoding the RNA-

dependent RNA polymerase (RDR6), dicer-like1 (DCL1),

DCL2, and Argonaute1 (AGO1) proteins. RDR6 encodes an

RNA-dependent RNA polymerase, presumably required to

synthesize dsRNA from ‘aberrant’ RNA molecules derived

from silencing loci [24–26]. DsRNA is then cleaved into small

interfering RNA (siRNAs) by a DCL protein [27]. Subse-

quently, the siRNAs associate with and guide AGO1 to com-

plementary RNA molecules for degradation of the target [28].

For optimization of real-time PCR amplifications, 5-fold 1/5

dilution series of wild-type cDNA were amplified with the

ACT2 (used as constitutive control), RDR6, DCL1, DCL2,

and AGO1 primers to generate a standard curve. A linear re-
Fig. 2. Protein accumulation levels of transgenes in silenced and non-silenced
linked immunosorbent assay. GUS activity in KH15 and P35S:GUS was det
glucuronide as a substrate. Error bars represent standard deviation of two b
sponse (r2 > 0.9) was obtained, indicating that quantification

was accurate at least over a dynamic range of 2.5 orders of

magnitude (data not shown).

Before monitoring expression of RDR6, DCL1, DCL2, and

AGO1, GUS accumulation in KH15 and KH15d6 was ana-

lyzed to confirm the silent state (Fig. 2). Subsequently, real-

time PCR analysis of RDR6, DCL1, DCL2, and AGO1

mRNA accumulation levels was performed. No differences in

expression levels of these genes were detected in KH15 when

compared to KH15d6 (Fig. 3), confirming the results obtained

with microarray analysis.

mRNA accumulation levels of these genes was also moni-

tored in a line in which silencing was induced by the presence

of a single copy of a sense transcript or a hairpin construct.

Line Kd27 contains one K and one H T-DNA carrying the

j- and Fd-coding sequences in sense orientation, respectively.

Accumulation of the j and Fd translation products reconsti-

tute Fab antibody fragments. When present in homozygous

condition, the K T-DNA causes silencing of both the j- and
backgrounds. In Kd27, Fab accumulation was determined by enzyme-
ermined spectrophotometrically with 5-bromo-4-chloro-3-indolyl-b-DD-
iological repeats.



Fig. 3. Expression of AGO1, RDR6, DCL1, and DCL2 in silenced versus non-silenced backgrounds. mRNA accumulation levels were determined by
real-time PCR using ACTIN2 as constitutive control. The fold difference of expression in the silenced plants when compared to the non-silenced
control is shown. Error bars represent standard deviation of two biological repeats.
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Fd-encoding sequences, which are homologous in the 3 0

untranslated region. In hemizygous condition Fab accumula-

tion is high [13,17]. In the second transgenic line, high GUS

activity obtained from integration of a single transgene carry-

ing a P35S:GUS expression cassette was strongly reduced after

supertransformation with a hairpin-GUS construct under con-

trol of the P35S-promoter. In the resulting P35S:GUS+HP line,

a single copy of both T-DNAs was integrated [15].

Monitoring transgene expression in the silenced transgenic

lines showed that it was reduced when compared to the non-

silenced controls (Fig. 2). Subsequently, mRNA accumulation

of AGO1, RDR6, DCL1, and DCL2 was assayed by real-time

PCR. For HO and HE Kd27, and P35S:GUS and

P35S:GUS+HP, mRNA accumulation levels of the silencing

genes were very similar (Fig. 3). Student’s t-test indicated that

the differences in expression levels in the silenced lines and the

non-silenced controls were not significant (P = 0.05). In con-

clusion, no evidence for differential gene expression of

AGO1, RDR6, DCL1, or DCL2 could be found in plants with

or without silencing of two different transgenes.
4. Discussion

To investigate whether the integration of silencing-inducing

transgenes influences transcript levels, we monitored genome-

wide transcriptional changes in allelic silenced and non-

silenced backgrounds. If induction of RNAi resulted in

differential expression of a subset of genes, this would need

to be taken into account when analyzing transcriptional

changes after gene knockdown with RNAi to study gene func-

tion. No differential gene expression could be detected by

microarray analysis in silenced transgenic plants in compari-

son to derived isogenic non-silenced control plants. This result

was confirmed by monitoring transcriptional changes of a sub-

set of genes known to be involved in RNA silencing by real-

time PCR in these transgenic lines as well as in transgenic lines

in which silencing was induced by gene dosage levels of a sense

transcript or by a hairpin construct. The observation that

introduction of a silencing-inducing construct does not affect

transcript levels of known genes is important because it allows
us to conclude that changes in transcript levels observed after

initiating RNAi to study gene function will be due to knock-

out of the gene of interest and not to the introduction of an

RNAi-inducing construct.

In this study, we made use of CATMA arrays [11] to mon-

itor genome-wide transcriptional changes. Whereas these ar-

rays have proven specificity and sensitivity [22], they cover

mostly protein-encoding genes as well as some genomic regions

with homology with open reading frames of transposable ele-

ments and pseudogenes. Therefore, we cannot rule out that

we missed expression of protein-encoding genes or other se-

quences not present on the array used here. The use of TILL-

ING arrays [28] that cover approximately 94% of the

Arabidopsis genome sequence might be useful to further ana-

lyze the effect of introduction of silencing-inducing constructs

on the transcriptome. However, for most routine analyses of

differential gene expression, CATMA arrays, Agilent Arabid-

opsis2 oligonucleotide arrays, and Affymetrix ATH1 Gene-

Chip probe arrays [29], which are similar to CATMA arrays

in terms of coverage, sensitivity, and specificity [11], are used.

Therefore, this study is an important control for the analysis of

differential gene expression after RNAi-mediated knockout of

gene expression.

These observations also have developmental consequences.

An important role of RNA silencing in plants is to protect

them against invading nucleic acids, such as viruses or transpo-

sons [30]. A paralog of RDR6, AtRdP1, which presumably

functions as an RNA-dependent RNA polymerase to synthe-

size complementary RNA strands to generate dsRNA during

transgene silencing [24,26], is involved in antiviral defense

and could be required to generate dsRNA from viral sequences

[31]. Because AtRdRP1 expression is induced after virus infec-

tion, RDR6 might also be induced after introduction of foreign

nucleic acids, such as silencing-inducing transgenes. However,

expression of RDR6 or other genes involved in RNAi was not

altered after induction of transgene silencing.

Transposons that are mobile genetic elements might cause

damage to the plant by excising and integrating into other re-

gions of the genome [32] and their activity be suppressed by

chromatin silencing [33]. Since methylation of the silenced

GUS transgenes was observed [23], their suppression probably
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also involves chromatin remodelling. In the derived non-

silenced line, all methylation in the coding sequence was lost

[23]. We also specifically focused on RDR2, SDE4 (silencing-

defective 4), DCL3, and AGO4 expression because these genes

are required for chromatin silencing [27,34,35]. However, these

genes were not differentially expressed in KH15 and KH15d6.

Thus, the RNA silencing machinery is constitutively expressed

and might be required to continuously repress transposable

elements present in the genome. Also, once invading nucleic

acids are recognized, silencing will very quickly be established,

thereby minimizing damage to the genome. Furthermore, the

silencing machinery is involved in endogene regulation via

microRNAs and siRNAs [4,36–38] and this gene control mech-

anism should not be disturbed upon genome stress or infecting

nucleic acids.
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