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Classical genetic approaches identify gene mutations
that disrupt the function or pathway being studied. The
recovery and mapping of mutations affecting pheno-
types is time-consuming and usually not easily applied
to mammalian systems. Reverse genetic approaches
involve the disruption of a gene with an unknown or
suspected function to determine the effect on a function
or pathway; in many cases, this is also expensive and
time-consuming. Now that the genomes of many key
model organisms have been largely sequenced, nucleic-
acid-based approaches that act to silence gene expression
in a sequence-specific manner have become powerful
tools for investigating gene function. These nucleic acid
molecules are also being developed as therapeutic agents
that target viruses and disease-causing genes.

Small interfering RNAs (siRNAs) are one of the
most recent additions to the wide repertoire of nucleic
acid molecules used to silence gene expression. siRNAs
are the effector molecules of the RNA interference
(RNAi) pathway1,2, which was discovered in 1998 when
Andrew Fire and Craig Mello injected double-stranded
RNA (dsRNA) into the nematode Caenorhabditis elegans,
initiating a potent sequence-specific degradation of
cytoplasmic mRNAs containing the same sequence as
the dsRNA trigger3,4. The discovery of RNAi in nema-
todes made it apparent that post-transcriptional gene

silencing (PTGS) in plants, and quelling in fungi, were
fundamentally related processes that were also triggered
by dsRNA. RNAi was rapidly developed as a tool to
study gene function, and was found to occur in protozoa
and almost all higher eukaryotes tested4–8.

These early applications used long dsRNA, but long
dsRNA was not effective in most mammalian cells
because it induced the antiviral INTERFERON (IFN)
response9, which usually leads to cell death. Genetic and
biochemical investigations of the mechanisms guiding
RNAi in different organisms revealed the conservation
of cellular machinery that cleaves long dsRNA into
duplexes of 21- to 28-nucleotide siRNAs, which guide
the sequence-specific degradation of mRNAs2,10–12 (FIG. 1).
The elucidation of siRNA structure led to the discovery
that siRNAs can effectively reduce gene expression in
many mammalian cell types without triggering the
IFN response13–15.

RNAi provides a new, reliable method to investigate
gene function that has many advantages over other
nucleic-acid-based approaches, and which is therefore
currently the most widely used gene-silencing technique
in functional genomics. Previous extensive research on
the development of therapeutic antisense nucleic acids
should facilitate development of therapeutic siRNAs.
This review will give a brief overview of the most popular
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modifications thereof have been used to target dsDNA
for the inhibition of transcription by the formation of
triple helices26.

Ribozymes. Ribozymes bind to RNA through Watson–
Crick base pairing and act to degrade target RNA by
catalysing the hydrolysis of the phosphodiester back-
bone27 (FIG. 3). There are several different classes of
ribozymes, with the ‘hammerhead’ ribozyme being the
most widely studied. As its name implies, the hammer-
head ribozyme forms a unique secondary structure
when hybridized to its target mRNA. The catalytically
important residues within the ribozyme are flanked by
target-complementary sequences that flank the target
RNA cleavage site. Cleavage by a ribozyme requires
divalent ions, such as magnesium, and is also dependent
on target RNA structure and accessibility28. Co-localizing
a ribozyme with a target RNA within the cell through
the use of localization signals greatly increases their
silencing efficiency29. The hammerhead ribozymes are
short enough to be chemically synthesized or can be
transcribed from vectors30, allowing for the continuous
production of ribozymes within cells.

siRNAs. siRNAs found in nature are derived from the
cytoplasmic processing of long dsRNA by the RNase-III-
type enzyme termed Dicer31. Dicer cleaves long dsRNA

nucleic-acid-based gene-silencing approaches available
and discuss the applications of siRNAs in functional
genomics and their potential as therapeutic agents.

Nucleic-acid-based gene silencing
Several different types of molecule that act to inhibit
gene expression by sequence-specific targeting of
mRNAs have been developed in the hope of creating
therapeutic agents. The three major nucleic-acid-
based gene-silencing molecules are chemically modified
antisense oligodeoxyribonucleic acids (ODNs), ribo-
zymes and siRNAs16. Less-utilized antisense molecules
include peptide nucleic acids (PNAs)17, morpholino
phosphorodiamidates18, DNAzymes19–21 and the
recently developed 5′-end-mutated U1 small nuclear
RNAs22. siRNAs, ODNs and ribozymes silence gene
expression through different mechanisms, as shown
in FIGS 1,2,3.

ODNs. ODNs are generally ~20 nucleotides in length
and act by hybridizing to pre-mRNA and mRNA to
produce a substrate for ribonuclease H (RNase H),
which specifically degrades the RNA strand of the
formed RNA–DNA duplexes23 (FIG. 2). If modified in a
way to prevent the action of RNase H, ODNs can
inhibit translation of mRNA via steric hindrance24, or
inhibit splicing of pre-mRNAs25 (FIG. 2). ODNs and
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Figure 1 | Mechanisms of nucleic-acid-based approaches for gene silencing: RNA silencing. Double-stranded (ds) RNA
can be produced endogenously within the cell, as in the case of microRNAs (miRNAs) and long dsRNA produced by genomic
transcription of long sense and antisense RNAs. Alternatively, dsRNA can be introduced directly into the cell through a dsRNA virus
or by experimental manipulation. The dsRNA present is cleaved by the Dicer enzyme within the cell into 21- to 28-nucleotide small
interfering RNAs (siRNAs) or miRNAs that are passed on to protein complexes by the dsRNA-binding protein R2D2, forming
RNA-induced silencing complexes (RISCs). There are probably different types of RISCs that direct mRNA degradation, translational
inhibition or chromatin modification. 7 mG, 7-methyl guanine; AAAAA, poly-adenosine tail; Me, methyl group; p, 5′ phosphate.
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consideration. The finding that the sequence of an
siRNA molecule itself affects silencing efficiency indepen-
dently of target site accessibility further complicates
comparison of ODNs with siRNAs61–63.

How crucial target accessibility is for the various
gene silencing techniques remains a matter of debate.
RNA-binding proteins and extensive secondary or
tertiary structures within mRNA are suggested to inter-
fere with the hybridization of ODNs to their target RNA
molecules. Several groups have investigated whether
these variables also affect the efficiency of siRNAs56,58,59,63.
Most of these studies have found a direct correlation
between the efficiency of an ODN and an siRNA relative
to the target position on mRNA. All studies except
two59,64 have also suggested that siRNAs are far more
potent and longer-lasting than various types of
ODN55–58,60. It is estimated that the half-maximal inhibi-
tion levels (IC

50
) of siRNAs are some 100- to 1,000-fold

lower than an optimal phosphorothioate-modified
oligodeoxynucleotide65 directed against the same
target55–57. Although a systematic and extensive com-
parison of the gene silencing efficiency mediated by
ribozymes and/or DNAzymes and siRNAs has yet to
be done, several experiments have indicated that
siRNAs are also more effective than ribozymes and
DNAzymes66,67. Long hairpin loops that seem to silence
gene expression by RNAi are also more potent than
hammerhead ribozymes68.

All three major approaches for targeting mRNA
degradation have the potential for nonspecific effects on
gene expression. ODNs, especially when phospho-
rothioate-modified, can be toxic because they act non-
specifically by binding endogenous proteins69. The high
concentration at which ODNs must be used to elicit
gene-silencing activity further compounds this problem.
ODNs with the CpG motif have also been shown to
induce expression of IFNs or other innate immune
responses through the binding of Toll-like receptors
(TLRs)70–72. This nonspecific property of ODNs has
actually been discovered to be the reason for the thera-
peutic properties of several successful ODNs73,74.

into 21- to 28-nucleotide siRNA duplexes that contain
2-nucleotide 3′ overhangs with 5′ phosphate and 3′
hydroxyl termini (FIG. 4). Components of the RNAi
machinery specifically recognize the siRNA duplex
and incorporate a single siRNA strand into a protein
complex32 termed the RNA-induced silencing complex
(RISC)10. RISC cleaves mRNAs containing perfectly
complementary sequences, 10 nucleotides from the 5′
end of the incorporated siRNA strand12. Like ribozymes,
siRNAs can be synthetically produced or expressed from
vectors transcribing short double-stranded hairpin-like
RNAs that are processed into siRNAs inside the cell.
Unlike ODNs and ribozymes, siRNAs cannot effectively
target pre-mRNAs for degradation in mammalian cells33.
Evidence exists that several organisms use RNAi-related
mechanisms to also target CHROMATIN modifications and
transcriptionally silence genes34–44.

siRNAs resemble non-coding RNA molecules termed
microRNAs (miRNAs) that are naturally used by cells to
regulate gene expression45,46.A mature miRNA is a single-
stranded molecule of 21- to 22-nucleotides that is
excised in the cytoplasm from a 70-nucleotide hairpin
precursor47. The mature miRNAs are incorporated into
a protein complex (miRNP) that associates with ribo-
somes and inhibits translation of mRNAs containing
sequences partially complementary to the miRNA in
their 3′ untranslated region (UTR)48–52. If presented
with a substrate with perfect complementarity, an
miRNA molecule can act like an siRNA and guide
multiple rounds of mRNA degradation53.

Comparison of gene-silencing approaches
Several groups have compared different aspects of gene
silencing mediated by ODNs and siRNAs in tissue
culture models54–60. Drawing conclusions from these
studies is not straightforward, because the effectiveness
of gene silencing depends on the concentration of
silencing reagent, transfection technique, cell type, target
site selection, chemical modifications and the time
point at which data were analysed. None of the analyses
conducted so far has taken all of these parameters into

CHROMATIN

Complex of DNA, histones and
non-histone proteins from
which eukaryotic chromosomes
are formed.

a  RNase H-inducing ODNs

ODN

RNase H

Degradation by nucleases

+

b  Steric hindrance

Translational inhibition Inhibition of splicing

Exon 1 Intron Exon 2

Figure 2 | Mechanisms of nucleic-acid-based approaches for gene silencing: antisense compounds. Two mechanisms by
which antisense compounds sequence-specifically alter gene expression. Oligodeoxyribonucleic acids (ODNs) can be introduced
into the cell through experimental manipulation. The antisense molecules can hybridize to either mRNA or pre-mRNA. The RNA
strand of DNA–RNA duplexes is degraded by RNase H. Certain chemically modified antisense molecules complexed with RNA are
not recognized by RNase H. These types of compound can be used to inhibit translation of mRNAs or inhibit or alter splicing
pathways of pre-mRNAs. 
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studies describe the potential for side effects in the
application of siRNAs in therapeutics and investiga-
tive applications, and emphasize the importance of
identifying effective siRNAs so that the lowest possible
concentration of siRNA is used for gene silencing. It will
be interesting to see if mice treated with short-hairpin-
RNA-producing vectors, or siRNAs, display induction of
IFN-response genes.

Besides their nonspecific effects, nucleic-acid-based
gene-silencing molecules are also prone to inducing
off-target effects by targeting sequences closely related to
the target of interest. The level of off-target effect is
dependent on the mode of silencing and the stability of
the nucleic acid hybrid. ODNs are particularly likely to
induce off-target effects, because as few as six or seven
contiguous DNA/RNA base pairs can be recognized by
RNase H84. To circumvent this problem, antisense
oligonucleotide gapmers were developed, resulting in
only one stretch of ~10 nucleotides of ODNs that can
elicit an RNase H response85. Detailed investigations of
how siRNAs function have revealed artefacts caused by
unintentional targeting of mRNAs. If siRNAs are not
carefully selected, siRNAs having partial complementarity
to an mRNA target can act like endogenous miRNAs
and repress translation86–88 or subject mRNAs to
degradation78. The latter study, which compared the
gene-expression profiles created by different siRNAs
targeted against the same transcript, revealed that in
extreme cases as little as 11- to 14-nucleotide comple-
mentarity between the 5′ end of either siRNA strand to
an mRNA can cause a reproducible reduction in tran-
script levels78. Phenotypes identified in RNAi screens
should later be confirmed with different siRNAs targeting
the same transcript89. If antisense sequences are carefully
selected, ODNs, ribozymes, DNAzymes and siRNAs are
able to selectively target a particular allele that differs
from another by as little as a single nucleotide66,90–94.
The remainder of this review will focus on aspects of
siRNA-mediated gene silencing.

Vectors for production of siRNAs
After the discovery of catalytic RNA, and the very
small hammerhead ribozyme in particular, synthetic
ribozyme-based therapeutics were intensively explored.
Because small RNA molecules can either be chemically
synthesized or expressed from DNA vectors, they were
also examined as targeting reagents in gene therapy. The
development of vectors that produce hammerhead
ribozymes from an RNA polymerase III promoter (pol
III) facilitated the development of similar vectors for
production of siRNAs95. Production of siRNAs from a
vector has predominantly been done through the trans-
cription of a hairpin RNA that structurally mimics an
miRNA precursor, allowing it to be processed into an
siRNA inside the cell. TABLE 1 provides a comparison of
the advantages and disadvantages of vectors versus
synthetic siRNAs.

Vectors can stably integrate into the genome and
mediate the long-term knockdown of endogenous
transcripts in cell culture and in vivo. Several groups
have developed adenoviral96–99, adeno-associated viral

Because ribozymes, like ODNs, hybridize to their targets
without assistance, relatively high concentrations are
also needed to silence genes, and unspecific effects can
occur, especially when the ribozymes are chemically
modified. The use of RNA localization signals or RNA
chaperones can overcome this problem, allowing for
potent silencing with a relatively low concentration of
ribozyme75. Recent data have demonstrated that
humans and mice express TLRs that are activated by
uridine/guanosine- and uridine-rich single-stranded
RNA oligonucleotides, respectively76,77. Activation of
these TLRs by single-stranded RNA seems to occur in
the endosomal compartment of plasmacytoid dendritic
cells, and results in the expression of IFN-γ and other
cytokines. If chemically modified siRNAs or ribozymes
delivered in vivo are endocytosed and denatured, they
can, depending on the siRNA sequence, activate these
particular TLRs. This potential side effect could, like
CpG motifs in antisense ODNs, be beneficial for therapy
of viral infections or cancer.

The low concentration of siRNA required to elicit
effective gene silencing, and the fact that siRNAs are
specifically and rapidly incorporated into RISC,
diminishes the potential for the nonspecific binding of
proteins. Indeed, several reports have demonstrated that
transfection of siRNAs at moderate concentrations
does not cause global nonspecific effects on gene
expression78–80. Three recent reports, however, have
demonstrated that the application of RNAi in mam-
malian cells can affect gene expression nonspecifically,
depending on siRNA concentration, cell type, delivery
reagent and mode of siRNA expression81–83. These non-
specific effects include the stimulation of subsets of
genes involved in the IFN response, although the induc-
tion of IFN response genes in these studies did not cause
cellular growth arrest, as would be expected if a true IFN
response were activated. In agreement, the microarray
gene profiles of HeLa cells transfected with long dsRNA,
or treated with IFN type 1 or a high concentration of
luciferase siRNA (200 nM), only partly overlap81. These
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Figure 3 | Mechanisms of nucleic-acid-based approaches for gene silencing: ribozymes.
General mechanism by which ribozymes silence gene expression. Ribozymes can be produced
within the cell through transcription or can be directly introduced into the cell through experimental
manipulation. For the hammerhead ribozyme, two arms are used to direct the catalytic centre to
target the hydrolysis of the phosphodiester backbone of the mRNA. 
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High-pressure tail vein injection of siRNAs in physio-
logical solution was the first procedure to success-
fully deliver siRNAs into highly vascularized mouse
tissue115,117–119,121–123, causing up to 90% reduction in
target gene expression in the liver and, to a lesser extent,
in the lung, kidney, spleen and pancreas. The silencing is
transient, in certain cases lasting more than a week, and
the levels of silencing are not absolute because there is
significant animal-to-animal variation.

Development of siRNA-producing viruses holds
great promise as an alternative mode of gene therapy for
DOMINANT human diseases, as well as for studying gene
function in mammalian model systems96,101,102,104.
Several different types of virus have been engineered to
produce siRNAs. Recombinant AAV can mediate the
delivery and long-term expression of a transgene in
both dividing and non-dividing mammalian cells. The
virus is mostly found in an episomal form that inte-
grates randomly and at a low frequency into the host
genome. Incredibly, injection of siRNA-producing AAV
into mouse brain resulted in effective silencing near the
injection site for up to seven weeks after infection101.
Delivery of siRNA-producing adenovirus to mouse
liver by injection into the tail vein, or to mouse brain by
direct injection, has also resulted in effective silencing of
gene expression96. siRNA-producing lentiviruses that
are able to transduce non-dividing cells and that escape
transcriptional silencing during development have been
used to deliver siRNAs into embryonic stem cells to
create knockdown mice (see below)104. At the moment,
there is no obvious reason why siRNA-producing viral
vectors cannot be applied to gene therapy by using a
strategy similar to that used to deliver ribozymes for the
treatment of HIV currently in Phase I and II clinical
trials124. siRNAs have been shown to successfully target
HIV in tissue culture models125.

If siRNAs are to be used for therapeutic purposes,
methods must be developed that will allow the gentle
delivery of siRNAs in vivo. Such methods, although
still imperfect, have been developed for the delivery
of ODNs126, including ingestion of chemically modified
ODNs127,128, one of which has been given Orphan Drug
status by the US FDA129. The recently discovered small
molecules that enhance the transdermal penetration
of several macromolecules130, including ODNs, could
potentially be used for the systemic delivery of siRNAs
through a transdermal patch. Aerosol methods similar
to those used for gene delivery in the lungs131 might
also be used for the gentle delivery of siRNAs in the
near future. It remains to be seen whether and which
chemically modified siRNAs enhance in vivo delivery.
In order not to be limited to the current repertoire of
ODN and ribozyme chemical modifications, new
types of chemical modification are currently being
developed for siRNAs.

siRNAs to investigate gene function in vivo
RNAi is a promising tool for mouse and rat gene
function analysis, and has allowed for the creation of
knockdown mice that in certain contexts offer advantages
over the classical method of homologous recombination

(AAV)100,101, retroviral102 and lentiviral vectors103–105 that
initiate RNAi in transduced tissue culture cells and in vivo
by transcription of a hairpin RNA from a pol II or pol
III promoter. These viral vectors could one day be applied
as an alternative mode of gene therapy (see below). To
increase their utility for cell culture studies, vectors that
mediate inducible pol III expression of siRNAs were
developed103,106–108. The development of a pol-II-based
vector that can produce a several-hundred-base-pair
hairpin RNA in vivo without inducing the IFN response
has provided an alternative method for RNAi in mam-
mals, while also permitting the creation of tissue-specific
‘knockdown’ mice109. To overcome induction of the IFN
response owing to the presence of long dsRNA in the
cytoplasm, efficient export of the RNA to the cytoplasm
is prevented.

In vivo delivery of siRNAs
ODNs and ribozymes have been successfully delivered
in vivo using a variety of strategies. Intravenous injection
is currently the most popular mode of delivery of ODNs
in ongoing clinical trials. Successful delivery of siRNAs,
siRNA-producing plasmids or siRNA-producing viruses
into mammalian model organisms has been carried out
using various methods. These methods include electro-
poration110–113 and both local96,101,114–116 and systemic
injection96,115,117–123 procedures. It is difficult to make
generalizations about which delivery method leads to
the most effective silencing, however, because different
tissues have different requirements for effective delivery,
especially for animals of different sizes.

DOMINANT DISEASE

A disease caused by a dominant
genetic mutation.
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silencing. The minimal substrate for a siRNA observed so far is comprised of the central 13
nucleotides (J. Martinez, personal communication) The orange triangle indicates the site of mRNA
cleavage. nt, nucleotide; RISC, RNA-induced silencing complex; siRNA, small interfering RNA.
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involved in fundamental processes such as cell division,
apoptosis and cell morphology, and physiological
processes such as fat metabolism.

Until recently, genetic screens were mostly limited to
non-mammalian model organisms, and only a few non-
saturating genetic screens had been conducted in
mice150–154. This prompted the use of other vertebrate
model organisms, such as zebrafish, in which SATURATING

GENETIC SCREENS could be carried out relatively easily and
affordably. Current reverse genetic approaches for
studying embryonic development in zebrafish use anti-
sense molecules, termed morpholino phosphorodiami-
dates18, because RNAi using long dsRNA does not seem
to work in zebrafish155, even though zebrafish do contain
miRNAs156. With the advent of siRNAs, it is now feasible
to carry out reverse genetic screens in mammalian tissue
culture cells, Xenopus oocytes157, chicken embryos158 and,
potentially, mouse and rat embryos112,159,160. It is not
established whether siRNAs are functional in zebrafish.
Such screens will bypass the time-consuming task of
identifying and validating clear mammalian homo-
logues, as well as providing a means to easily discern new
mechanisms that are specific to mammals. It has finally
become feasible to conduct a relatively rapid identifica-
tion of human-specific processes through targeting of
human-specific genes in different cell types.

Reverse genetic approaches that used either ODNs or
ribozymes to reduce the expression of specific genes
have proven successful for use in drug target validation,
but have never passed the hurdle of genome-wide target
identification. RNAi has become the preferred approach
for functional genomics in mammalian tissue culture.
There are several reasons for this choice, including the
high gene-silencing efficiency at low concentration, ease
of finding accessible target sites, high specificity, good
stability and custom siRNA synthesis at moderately low
cost. Several large-scale RNAi screens have been con-
ducted in mammalian tissue culture cells using synthetic
siRNAs161 or hairpin expression162–164; these screens have
identified genes involved in apoptosis, signalling, regu-
lation of protein stability and the ultraviolet radiation
damage response.

(FIG. 5). The silencing mediated by RNAi constructs in
mice is stably passed on through the germline132.
With RNAi, one could easily target particular splice
variants of a gene for destruction63. Multicopy genes
that are functionally redundant can theoretically all
be knocked-down with one transgene construct. By
targeting a conserved domain, an entire gene family
can be knocked down. RNAi can also overcome the
current difficulties in creating double-knockout mice
of two genes that are in close proximity on the same
chromosome.

siRNAs have also broadened the horizons of the
types of experiments that can be done in mammalian
model systems. For example, to determine the relative
amount of gene product needed for certain processes at
particular developmental stages, it is now possible to
modulate gene dosage in a spatial and temporal manner
by simply varying the amount of siRNA expressed in the
cell133. Current difficulties in creating temporally and
spatially restricted knockout mice include identifying
regulatory regions that can express recombinase proteins
in the desired patterns. Several groups have used RNAi
to rapidly circumvent this problem by the local injection
or electroporation of siRNA-producing plasmids or
viruses96,101,112,134.

The refinement of selection methods for effective
and specific hairpins, as well as the refinement of
expression and delivery techniques for siRNAs, will
make mouse knockdowns a useful technique for future
research. It should, however, be cautioned that it is
uncertain whether long-term expression of siRNAs in
mice can cause side effects. Long-term expression of
high levels of hairpin RNAs could, in theory, compete
with endogenously expressed miRNAs for incorporation
into miRNPs.

siRNAs as tools for genome-wide screening
RNAi has become the preferred approach for functional
genomics in several model systems135. Several near-
genome-wide RNAi screens have been conducted
using long dsRNA in C. elegans136–146 and Drosophila
melanogaster147–149. These screens have identified genes

SATURATING GENETIC SCREEN

A screen of sufficient scale to
identify all possible target genes.

Table 1 | Vector-based versus synthetic siRNA-based RNAi in mammalian cells

Approach Advantages Disadvantages

Vector-based Delivery to non-transfectable cells. Prone to nonspecific interferon- 
Stable silencing for non-essential genes. response-related effects caused  
Inducible expression. by high expression of hairpin RNA.
Enzymatic preparation of hairpin libraries using cDNAs Difficult to select and construct
and cDNA libraries. highly effective hairpin RNAs.  
Flexibility of shuttling of hairpin insert between different Decreased potential for systemic
vectors (for example, between lenti-, retro- or  delivery in therapeutic applications.
adenoviral expression vectors; variation of promoters).
Stable positive-readout screening using complex 
polyclonal libraries.

siRNA-based Less prone to induce nonspecific side effects due to  Duration of silencing is dependent   
greater control over amount of transfected reagent.  on rate of cell division.
Ease of chemical synthetic production and quality control.
Small size and chemical modifications hold best potential 
for therapeutic applications.
Useful for structural functional studies of RNAi machinery.

The overall costs for both approaches are similar if arrayed libraries are produced targeting individual genes. RNAi, RNA interference;
siRNA, small interfering RNA.
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siRNA chemical modifications that facilitate uptake in
primary and/or non-adherent cells. Future small-
molecule drug screens might identify molecules that
stimulate siRNA uptake in particular cell types. Viral
vectors that are able to transduce primary cells have
recently been applied as a mode of delivery for RNAi-
based screens164. With the development of such tech-
nologies, the rate-limiting steps for RNAi-based
screening will soon be screen design and data analysis.

RNAi is proving helpful in the validation of poten-
tial drug targets identified by the use of cDNA
microarrays167,168. Large amounts of microarray data
have been produced in an effort to identify genes
whose expression in disease tissue deviates from that
of normal-tissue gene expression. These microarray
studies usually identify hundreds, if not thousands, of
genes that have altered expression, making it difficult
to identify the relevant drug targets; siRNAs designed
to target genes that are overexpressed in disease tissue
can now be used to rapidly identify suitable drug targets
for a particular disease.

The current rate-limiting step for genome-wide
screening in mammalian cells is resource availability.
Technologies that combine 96- or 384-well plate formats,

The potential of genome-wide screening by RNAi in
mammals for identifying new therapeutic drug targets is
only limited by the types of screens one can do: a
mammalian RNAi-based screen can be carried out for
any process for which a tissue culture model exists. As
with classical genetic approaches, modifier screens,
which look to identify suppressors or enhancers of
particular processes, can be conducted, depending on
the experimental setup. The mammalian siRNA-based
screens conducted so far have also accommodated
the use of extracellular agents to induce particular
processes. For the most part, RNAi-based screening
in mammalian cells has been limited to easily trans-
fectable, rapidly dividing adherent cell types. However,
one could imagine conducting a screen for factors that
mediate cellular differentiation using totipotent or
pluripotent stem cell lines. Electroporation techniques
currently used to deliver siRNAs to non-adherent cells
could potentially be used for high-throughout screening
(HTS)165. With regard to electroporation, siRNAs are
preferable to hairpin-producing vectors, as the condi-
tions for effective delivery of siRNAs are milder than
for plasmids and result in less cell death166. New modes
of siRNA delivery could arise from the identification of

Virus producing
hairpin RNA
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Time to create: years Duration of action: indefinite

ES cells

b  Transgenic RNAi

c  Local RNAi
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Time to create: weeks Duration of action:
virus: weeks to indefinite
siRNAs: weeks

ES cells

siRNA

d  Systemic RNAi

Time to create: days Duration of action:
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Figure 5 | In vivo mammalian gene silencing. The figure outlines several methods of gene silencing in the mouse, and compares
their time of preparation and duration of action. ES, embryonic stem; RNAi, RNA interference; siRNA, small interfering RNA.
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dsRNA would also have this advantage, although the
fraction of effective siRNAs cannot be controlled178.
siRNAs produced with this procedure should be further
purified, to remove small amounts of unprocessed
dsRNA that could induce the IFN response.

Although screening by RNAi is relatively fast and
easy, it has several disadvantages when compared with
classical genetic screens. Most significantly, classical
genetic screens can identify mutations that are not in
coding regions. Classical genetic screens can also pro-
duce dominant-negative or gain-of-function muta-
tions, which are often useful, and sometimes essential,
for understanding gene function. To overcome some
of these pitfalls, arrayed adenovirus cDNA expression
libraries (knock-ins) are being used in combination
with arrayed adenovirus libraries that express short
hairpin RNAs97. Another pitfall of screening with
RNAi is that siRNAs almost never fully deplete the target
mRNA and usually several different siRNAs must be
screened before an effective siRNA is identified.
Transient RNAi in rapidly dividing tissue culture cells
usually lasts three to five days. However, even if
applied to slowly dividing cells, it is possible that an
effective siRNA will have difficulty in depleting a stable
protein. Another layer of complexity to consider
when designing siRNA-based screens is cell type. The
amount of available RISC can vary between cell types,
possibly reflecting the relative levels of endogenous
miRNAs competing for the RNAi machinery, and is a
limiting factor for RNAi efficiency63,139. In the long
term, the identification of specific and effective
siRNAs for each gene will help to overcome some of
these problems.

Mammalian RNAi-based genomic screens offer great
opportunities. The institutions that are developing
platforms for high-throughput, genome-wide RNAi
screens in mammalian cells will have a competitive
advantage in biomedical research. Complementing
these siRNA-based screens with proteomic methods will
yield a relatively descriptive outlook on particular cellular
processes that can be further studied.

siRNA-based therapeutics
Several ODN and ribozyme molecules are already being
tested in clinical trials, and one antisense ODN —
fomivirsen (Vitravene; Isis) — has been approved by the
US FDA for the treatment of cytomegalovirus infection
of the eye. So far, most of the antisense oligonucleotides
in clinical trials are phosphorothioate-modified ODNs65

or phosphorothioate-modified ODN gapmers, which
have problems such as toxicity at high concentration and
a low affinity for their target RNAs. Several second-
generation antisense constructs containing additional
types of chemical modifications are also currently in clini-
cal trials and are predicted to do better than their phos-
phorothioate ODN predecessors. A number of recent
reviews have covered these different drugs and their
targets, so they will not be discussed here further23,124,126.

As siRNAs and their functionality in mammalian cells
were discovered only three years ago, they have not yet
had time to enter clinical trials. There is, however, no

cationic transfection, robotics and image recognition
software are already being used to conduct near-genome-
wide screens in mammalian tissue culture cells. New
types of hardware platforms for the HTS process are
also being developed. Most recently, microarray chips
have been developed that use plasmids or siRNAs spotted
on glass slides and reverse transfection to allow for rapid
screening of mammalian cells169–171. The drawbacks of
RNAi microarrays are that only adherent cells can be
analysed, the cationic transfection reagent used is
restricted to specific cell types and technology must be
developed to allow the long-term storage of RNAi
microarrays.

As the probability of having off-target effects increases
with genome size, the importance of careful siRNA
design increases. Recent experimental findings61,62,172–174

have aided in the development of siRNA libraries by
refining the standard parameters175 for selecting effective
siRNAs (FIG. 4).All of these findings converge on the con-
clusion that the thermodynamic stability of the first few
base pairs of both ends of an siRNA duplex are crucial for
determining which siRNA strand will be incorporated
into RISC. Several groups are designing methods for the
high-throughput development of hairpin-producing
plasmid libraries162,176,177. Although the parameters for
selecting effective siRNAs could also be applied for
construction of hairpin vectors, they might be less reliable
because the positions at which Dicer RNase III cleaves a
hairpin are not well defined. Following the refined para-
meters for siRNA design does not, however, guarantee an
effective siRNA, because the target position within a
mRNA might also affect silencing efficiency56,59,63. Besides
good siRNA design, pooling of effective siRNAs against
the same target also decreases off-target effects. The
pooling strategy dilutes out the effect of any siRNAs
having off-target effects, while keeping the total of target-
gene-specific siRNAs constant. Pooling of siRNAs that are
randomly generated in vitro from Dicer cleavage of long

Table 2 | Terminal modifications of siRNA duplexes

Modification Gene silencing Cell system References

Sense strand 5′′ or 3′′ termini

Aminolinker ++++ HeLa, HeLa extract 32,189,193

Puromycin, biotin ++++ HeLa 193

Fluorescein ++++ HeLa 63

Antisense strand 3′′ terminus

Aminolinker ++++ HeLa, HeLa extract 32,189

Puromycin, biotin ++++ HeLa 193

Fluorescein +++ HaCaT 194

Fluorescein, Alexa488 – HeLa 63

Inverted 2′-deoxy abasic cap ++++ HeLa 189

Antisense strand 5′′ terminus

Aminolinker – HeLa, HeLa extract 32,189,193

Fluorescein ++++ HeLa 63

Inverted 2′-deoxy abasic cap – HeLa 189

Scale of the silencing effect as compared with the efficiency of unmodified siRNA duplex: –, modification
rendering the duplex inactive; +, 20–40%;  ++, 40–60%; +++, 60–80%; ++++, >80% of efficiency of
unmodified duplex. siRNA, small interfering RNA.
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the therapeutic potential of siRNAs for the treatment
of hepatitis B virus (HBV) infection by directly target-
ing the virus119,120,123. A replication-competent HBV
genome was co-delivered with siRNAs targeting por-
tions of the HBV genome to effectively reduce viral
replication and protein production.Although promising,
it has yet to be demonstrated whether siRNAs can
effectively reduce virus levels when applied to a real,
ongoing infection. These results demonstrate the thera-
peutic potential of siRNAs and should stimulate
research into delivery methods that are also suitable
for therapeutic applications.

Optimizing the effectiveness of nucleic-acid-based
gene silencing in vivo requires that numerous parameters
be considered. The silencing molecule must be stable in
the circulatory system as well as in tissues, and should
bind blood proteins to a degree that is non-toxic, but
that prevents immediate loss of the molecule through
excretion. Much effort has been put into identifying
chemical modifications of nucleic acids that decrease
their susceptibility to nuclease attack, while allowing
them to maintain gene-silencing activity sufficient for
therapeutic use57,186,187. The compromises that need to
be made for systemic delivery are best illustrated for the

obvious scientific reason why siRNAs will not be used as
therapeutics with strategies similar to those that are now
used for ODNs and ribozymes. siRNAs are rapidly
catching up with ODNs and ribozymes for development
as therapeutics after the establishment of siRNA-based
biotechnology companies that focus on the development
of clinical programmes179. Several proof-of-principle
experiments have demonstrated the therapeutic potential
of siRNAs: siRNAs protected mice from fulminant
hepatitis121,122, viral infection123,180, sepsis115, tumour
growth181–185 and ocular neovascularization causing
macular degeneration114.

Given that siRNAs delivered by high-pressure tail
vein injection are most effective in the mouse liver,
several groups have tested the potential of siRNAs as
therapeutic agents for a wide variety of liver diseases. By
targeting endogenous genes expressed in the liver that
mediate apoptosis, mice pre-treated with siRNAs tar-
geting either caspase 8 (REF.121) or the FAS cell death
receptor122 were protected from acute liver failure
induced by a variety of reagents. The treatment of mice
with the same siRNAs after insult of the liver by apop-
tosis-inducing reagents also protected mice from liver
breakdown. Other groups have successfully demonstrated

Table 3 | Modification of the ribose 2′′ position

Modification Position Gene silencing Cells References

3′′ overhangs

2′-deoxy ++++ HeLa S3, HEK 293, COS-7, 13,175,189,194
NIH3T3, HaCaT, HeLa

2′-Ome ++++ HaCaT 191

2′-Oal ++++ HaCaT 191

LNA ++++ HeLa 192

5′ phosphate ++++ HaCaT 191

Base-paired region

2′-deoxy Fully modified s + HeLa 190

2′-deoxy Fully modified as – HeLa 190

2′-Ome 2 to 4 nt terminal ++++ HaCaT 191
nt of both strands

2′-Ome 50% nt +++/++/+* HaCaT, HeLa 189,195

2′-Ome Fully modified s +/– HeLa 189,190

2′-Ome Fully modified as – HeLa 189,190

2′-Oal 1 nt at both 5′ ends +++ HaCaT 191

LNA 4 to 8 nt of both ++++ to – * HeLa 191
strands

LNA 1 nt at both 5′ ends ++++ HeLa 192

2′-fU, 2′-fC One or both strands ++++ 293T, CD4+ T, HeLa 63,190,192,196

2′-fU, 2′-fC and 3 to 13 2′-deoxy nt ++++/+++/++* HeLa 190
2′-deoxy in as strand

2′-fU, 2′-fC and pS 3 pS linkages at ++++ HeLa 63
both 3′ ends

2′-fU, 2′-fC and pS Fully pS modified as + HeLa 190

pS 25–50% linkages ++++ HeLa, HaCaT, SW3T3 63,191,192

pS Both strands +++/++ HeLa 190,192

*The effect is dependent on the position of modifications within the siRNA duplex. Scale of the silencing effects is the same as described
in TABLE 2. 2′-Ome, 2′-O-methylribose; 2′-Oal; 2′-O-allylribose; 2′-fU, 2′-fluoro-2′-deoxyuridine; 2′-fC, 2′-fluoro-2′-deoxycytidine; as,
antisense strand of siRNA duplex; LNA, locked nucleotides (2′-O,4′-methylene nucleotides); pS, phosphorothioate internucleotidic linkage;
s, sense strand of siRNA duplex; siRNA, small interfering RNA.
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There are, however, no reports on the effectiveness of
chemically modified siRNAs in vivo. A high potential for
siRNAs as therapeutic agents has initiated efforts to
develop new types of nucleic acid chemical modifica-
tions, some of which are specific to siRNA structure.
Numerous clinical trials involving therapeutic siRNAs
are anticipated in the near future.

Conclusion
We are in the dawn of a new age in functional
genomics driven by RNAi methods. Although there
are technical challenges associated with the therapeutic
application of siRNAs, such as synthesis, delivery and
specificity, they currently offer numerous advantages
over other gene-silencing approaches. The siRNA
approach for gene silencing holds great therapeutic
promise, as siRNAs, like miRNAs, are naturally used by
cells to regulate gene expression and are therefore non-
toxic and highly effective. One potential drawback of
using siRNAs for therapeutics is that if used long term,
siRNAs could theoretically out-compete the function of
endogenous miRNA genes in certain cell types.

The years of research done on antisense therapeutics
will greatly facilitate the development of therapeutic
siRNAs. Further research into the fundamental mech-
anisms of RNAi could unveil new dimensions of
siRNA-mediated gene silencing that will have profound
implications for understanding gene regulation, and
which could also affect the development of functional
genomics and therapeutic applications.

phosphorothioate-modified ODNs currently in clinical
trials. Even though the modification decreases the affinity
of the ODN to its target RNA, it increases the effec-
tiveness of the molecules in vivo by increasing their
stability, retention, cellular uptake and biodistribution.
This is because phosphorothioate modifications increase
the affinity of ODNs to blood proteins and also pre-
vent the direct action of nucleases that would otherwise
degrade the ODNs188.

siRNA duplexes are protected from single-strand-
specific endonucleases, making them more stable than
either ODNs or ribozymes in serum60. However, because
stability in sera does not always translate to stability in the
blood, and because unmodified siRNAs are not readily
taken up by cells nor have a sufficient affinity for blood
proteins, siRNAs must also be chemically modified if they
are to be used for therapeutic purposes without a gene-
therapy-based platform that includes the use of viruses.

The modification of siRNAs could interfere with
incorporation of the siRNA into RISC, unwinding of the
siRNA duplex by helicase activities and/or the rate of
target cleavage and product release. Several groups have
attempted to identify chemical modifications that
increase stability of siRNAs while maintaining good
silencing efficiency63,175,189–192. TABLES 2 and 3 summarize
the various chemical modifications of siRNAs and their
effect on gene silencing. Of note, phosphorothioate
modifications are well tolerated within siRNA duplexes,
suggesting that cells will take up these types of siRNAs,
similarly to their ODN and ribozyme counterparts.
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