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Cells in tissues can be morphologically indistinguishable 
yet show molecular expression patterns that are remarkably 
heterogeneous. Here we describe an approach to comprehensively 
identify co-regulated, heterogeneously expressed genes among 
cells that otherwise appear identical. The technique, called 
stochastic profiling, involves repeated, random selection of 
very small cell populations via laser-capture microdissection 
followed by a customized single-cell amplification procedure 
and transcriptional profiling. Fluctuations in the resulting 
gene-expression measurements are then analyzed statistically 
to identify transcripts that are heterogeneously coexpressed. 
We stochastically profiled matrix-attached human epithelial 
cells in a three-dimensional culture model of mammary-acinar 
morphogenesis. Of 4,557 transcripts, we identified 547 genes 
with strong cell-to-cell expression differences. Clustering of 
this heterogeneous subset revealed several molecular ‘programs’ 
implicated in protein biosynthesis, oxidative-stress responses 
and NF-B signaling, which we independently confirmed by RNA 
fluorescence in situ hybridization. Thus, stochastic profiling can 
reveal single-cell heterogeneities without the need to measure 
expression in individual cells.

Cell-to-cell variations in gene and protein expression are 
important in the development and function of many tissues1,2. 
Fluctuations in single cells can be masked or completely misrepre-
sented when populations are analyzed3. This makes heterogenei-
ties problematic for interpreting bulk measurements from large 
numbers of cells, such as from tumors or developing organs. Yet 
such nonuniformities often uncover interesting molecular pat-
terns that can reveal important mechanisms for the regulation 
of cell fate4,5. Identifying heterogeneities is thus key for gaining a 
deeper understanding of tissue physiology.

The challenge in discovering heterogeneities is that cells of 
the same type may appear phenotypically indistinguishable. 
Heterogeneities at the molecular level can be uncovered by 
immunochemistry, but the markers must be selected a priori 
and analyzed in small groups. Although more parameters can 
be screened simultaneously with flow cytometry3, this involves 
substantial tissue processing to isolate single cells from solid 
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tissues. Extraction of individual cells is possible in situ using 
laser-capture microdissection6, but aside from large cells such 
as neurons and cardiomyocytes7,8, there is usually not enough 
biological material to measure the expression of all but the most 
abundant transcripts.

Last and most importantly, there is the conceptual hurdle of 
interpreting measurements from a single cell. Regulated cell-to-
cell heterogeneities will appear as fluctuations in one-cell mea
surements. However, fluctuations will also be observed because of 
random biological variation, which may be functionally inconse-
quential9, and measurement error, which can be enormous10. The 
inability to separate contributions from these different sources 
has precluded using single-cell approaches to study the coordina-
tion of pathways that are heterogeneously activated.

We sought to address these challenges by developing an approach, 
called stochastic profiling, which is based on small-population 
averaging of randomly chosen cells. Using this approach, we exam-
ined single-cell gene expression in a three-dimensional (3D) culture 
model of mammary-acinar morphogenesis11. The sensitivity,  
precision and quantitative accuracy of stochastic profiling make 
it an attractive technique for studying endogenous transcriptional 
heterogeneities in development and cancer.

RESULTS
Stochastic sampling of expression dichotomies
To reveal the dichotomous expression of a gene (gene B), which has 
high expression in one population and low expression in another 
(Fig. 1a), we first repeatedly selected very small cell populations at 
random and measured the average gene expression in each random  
sampling. Second, we constructed a reference histogram from 
expression data for homogeneously expressed genes (gene A),  
which estimate the sampling fluctuations when no dichotomy 
is present. Last, we compared the estimated reference distribu-
tion to the distribution of expression fluctuations for candidate 
genes measured from the same stochastic samplings (step 3). The 
gene B distribution will deviate from the gene A reference because 
of differences in the proportion of subpopulations collected at 
each sampling (Fig. 1a). Additionally, dichotomously expressed 
genes that are co-regulated at the single-cell level (gene B and the  
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co-regulated dichotomy, gene C) will have deviations that correlate 
across repeated samplings. Therefore, we can, in principle, iden-
tify heterogeneous expression programs composed of multiple 
genes by clustering patterns of sampling fluctuations.

Theoretical validation of stochastic sampling
We used computer simulations to help define the required sampling 
conditions and characterize the expression heterogeneities that 
stochastic sampling detects. Cells transcribe genes in exponential 
‘bursts’12, which yields log-normal probability distributions 
of mRNA species when examined across a cell population13  
(see below). We modeled gene expression in single cells as normal 
probability distributions with coefficients of variation (CVs) 
proportional to log-s.d. (Fig. 1b). The overall model described  
the reference and dichotomous distributions with four parameters: 
the CV of the reference distribution (CVa), the CV of the 
distributions in the gene that is dichotomously expressed (CVb),  
the magnitude of the expression difference between the dichotomous 

subpopulations (D) and the fraction of cells with high expression 
for the gene that is dichotomously expressed (F) (Fig. 1b).

After selecting values for CVa, CVb, D and F, we simulated the 
stochastic-sampling experiments and centered the expression fluc-
tuations of each gene on its log-mean expression taken across all  
samplings (Fig. 1a). Next, we compared the sampling fluctuations 
of the dichotomously expressed gene to a log-normal distribution 
using the log-s.d. calculated from the reference distribution. We 
then assessed the discrepancy between the log-normal reference 
distribution and the sampling fluctuations of the dichotomously 
expressed gene for statistical significance by a χ2 goodness-of-fit 
test (Online Methods).

As a control for the modeled stochastic samplings, we simulated 
a parallel set of control samplings, in which all the parameters 
were the same, but F was set to zero (that is, no dichotomy). These 
control samplings identified false positives, which were scored as 
different from the reference simply because the model CVs were 
poorly matched (CVa << CVb; Fig. 1c,d). When the reference and 
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Figure 1 | Small-sample profiling by stochastic sampling can be used to distinguish transcriptional heterogeneities from normal biological variation. 
(a) The statistical and empirical steps of stochastic sampling. The distributions shown were based on 48 simulated samplings with the following 
model parameters: CVa = 25%, CVb = 25%, D = 8 and F = 0.2. (b) Theoretical population distributions of a constitutively expressed gene (gene A) and a 
dichotomy with two subpopulations (gene B). Gene A is characterized by its mean (µa) and s.d. (σa), and gene B is characterized by the means (µb1 and 
µb2) and s.d. (σb1 and σb2) of the two subpopulations along with the relative fractions of each subpopulation (φ1, φ2). (c) Identifying false positives 
(FP), false negatives (FN) and effective stochastic sampling (SS) through Monte Carlo simulations. Stochastic-sampling experiments were simulated 
as described in Online Methods with the indicated parameters and D = 8. Data are shown as the median P value for the χ2 goodness of fit between the 
test and reference distributions ± 90% nonparametric confidence intervals (error bars) from n = 50 simulations of 48 samplings. (d–f) Examples of false 
positives (d), false negatives (e) and effective stochastic sampling (f) for D = 8 and CVb = 0.21. (g) Stochastic sampling with indicated numbers of 
averaged cells. Note that when 10 cells are averaged and CVa = 25–30% (yellow box), stochastic sampling is effective for all values of CVb. (h) Stochastic 
sampling for dichotomies with expression differences greater than fivefold. (i) Stochastic sampling is not strongly dependent on the relative proportion 
of subpopulations in a dichotomy.
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dichotomy CVs were poorly matched in the opposite direction, 
CVa >> CVb, there was the danger of false negatives because a 
dichotomous sampling distribution could be misinterpreted as a 
log-normal distribution with a larger CV (Fig. 1c,e). Effective sto-
chastic sampling occurred when the reference and dichotomy CVs 
were roughly comparable, so that significant deviations from the 
reference were observed only when F ≠ 0 (P < 0.05; Fig. 1c,f).

We first determined the maximum number of cells that, when 
expression data were averaged, could be used to confidently iden-
tify heterogeneities across a wide range of CVb. Direct estimates 
of transcriptional noise are not available, but studies in yeast have 
found that protein levels can fluctuate with CVs of ~12–38% 
(ref. 14). We independently varied CVa and CVb over this range 
for different numbers of cells sampled and then identified the 
CV combinations that gave false positives, false negatives and 
effective stochastic sampling. When CVa was very low (<20%), 
we found that there was a substantial likelihood of false positives, 
which was independent of the number of cells sampled (Fig. 1g). 
Conversely, when CVa was very high (>30%), there was a danger 
of false negatives, which increased dramatically when we sampled 
more than 10 cells (Fig. 1g). With 10-cell samplings and an inter-
mediate reference distribution (CVa of ~25–30%), we achieved 
effective stochastic sampling across nearly all CVb values (Fig. 1g).  
Using these parameters, stochastic sampling could identify 
dichotomies as small as five- to sixfold (Fig. 1h), with relatively 
little dependence on the dichotomy fraction above ~5% (Fig. 1i).  
When F < 0.05, the dichotomy was too rare to detect reliably 
in 10-cell samplings, and we observed a sharp increase in the 
number of false negatives (Supplementary Fig. 1). We conclude 
that stochastic sampling of up to 10 cells is sufficient to detect 
many dichotomies when given a reference for the ‘average’ non-
dichotomous sampling fluctuations.

Optimization of small-sample PCR for stochastic profiling
Based on the simulation-derived estimates, we then developed 
a poly(A)-PCR amplification procedure to profile gene expres-
sion accurately in 10 microdissected cells. Poly(A) PCR can be 

used to amplify large quantities of polyadenylated transcripts 
from minute samples15. This technique has previously been 
modified to improve either single-cell representation of genes 
or detection sensitivity for low-abundance transcripts10,16. To 
optimize the technique for stochastic sampling, we designed 
a ‘small-sample’ poly(A) PCR that maximizes both the repro-
ducibility between measurement replicates and the quantitative 
accuracy of genes measured from 10 cells (Supplementary Fig. 2  
and Online Methods). We validated accuracy and precision by 
serially diluting microdissected cells before the amplification and 
then quantifying relative gene expression after amplification by 
real-time quantitative PCR (qPCR). The dilutions were critical 
to ensure that quantitative differences in transcript amounts 
were not artificially increased or decreased during the proce-
dure. To date, this quantitative accuracy has only been shown 
when amplification is omitted entirely17, which substantially 
limits the number of transcripts that can be analyzed from the  
same sample.

For 24 genes of differing abundance, we found that small-
sample poly(A) PCR was highly accurate and reproducible for 
3–100 cells (Fig. 2a–h and Supplementary Fig. 3). The median 
amplification efficiency (E) across all genes measured was 
99.5%, and for individual genes, the efficiency of small-sample 
poly(A) PCR was comparable to the amplification efficiency of  
the real-time qPCR primers used for quantification (Ep). This 
suggested that the poly(A)-PCR procedure was not skewing 
changes in the abundance of individual genes. Overall, 10-cell 
reproducibility as measured by real-time qPCR was 0.36 cycle 
thresholds (CT), which corresponds to an amplification preci-
sion of ~28% if E = 100% (20.36 – 1 = 28%; Fig. 2i). Notably, 
for many genes the accuracy and precision of poly(A) PCR 
decreased substantially when single-cell equivalents of RNA 
were used (Fig. 2a–h and Supplementary Fig. 3). Several genes 
were not reproducibly detectable (Fig. 2e–h), whereas others  
deviated from the log-linear standard predicted from the 3–100-cell  
dilution series (Fig. 2a,c,d). We obtained these results for micro-
dissected breast epithelial cells with an average diameter of  
~10 µm. Therefore, many more cell types should be quantifiable 
using a small-sample (rather than single-cell) approach together 
with stochastic profiling.
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Figure 2 | Quantitative and reproducible small-sample amplification of 
high-, medium- and low-abundance transcripts from 3–100 cells.  
(a–h) The real-time qPCR cycle threshold (CT) for each gene plotted 
as a function of starting cellular material and is shown as the median 
with error bars indicating the range of three replicate small-sample 
amplifications. Amplification efficiencies (E) based on a log-linear fit of 
the 3–100-cell dilutions (red line) are listed along with primer efficiencies 
(Ep) calculated by serially diluting the template before real-time qPCR 
analysis. Results (a–h) are given in the order of increasing median cycle 
threshold from the 10-cell replicates, which was used as an approximation 
of relative abundance (lower cycle thresholds suggest increased relative 
abundance). Note that the one-cell amplifications (gray data point) of 
higher-abundance transcripts (a–d) often deviate from the log-linear fit, 
and the one-cell amplification of lower-abundance transcripts (e-h) are 
frequently not detectable (ND; yellow). (i) Small-sample amplification of 
10 cells. The cycle thresholds from 10-cell amplification replicates of all 
genes were mean centered, grouped and fit to a normal distribution. The 
s.d. of the mean-centered cycle thresholds was 0.36, corresponding to a 
coefficient of variation of 28%, assuming that amplicons doubled after 
each cycle (that is, 100% efficiency, 20.36 – 1 = 0.28).
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Adapting small-sample PCR to oligonucleotide microarrays
A key step in accurate 10-cell quantification was limiting the 
number of amplification cycles in small-sample poly(A) PCR to 
no more than 30 (Supplementary Fig. 2). With 10 microdissected 
cells, a 30-cycle amplification typically yielded ~10 ng of unlabeled 
cDNA, which was insufficient for oligonucleotide microarrays. We 
therefore reamplified a fraction of the poly(A) cDNA and added 
aminoallyl-dUTP for subsequent fluorophore labeling, yielding 
~1.5 µg of labeled cDNA per 10-cell sample. The conditions for 
reamplification differed from small-sample poly(A) PCR (Online 
Methods), and we carefully monitored the conditions with real-
time pilot experiments to identify the maximum number of cycles 
that kept all samples in the exponential phase of amplification. 
Doing so maintained the quantitative accuracy for high- and low-
abundance transcripts (Supplementary Fig. 4). Furthermore, 
repeat reamplifications using the same starting cDNA pool 
confirmed that reamplification added little measurement error 
to the final microarray measurements (Supplementary Fig. 5). 
Hybridization of reamplified samples to Illumina HumanRef-8 
microarrays consistently detected 7,000–8,000 transcripts (median 
detection P < 0.1). This result compares favorably with an earlier 
study from our group18, in which ~8,700 transcripts had been 
detected by standard profiling approaches using RNA extracted 
from large populations of the cells used here. We conclude that 
our experimental platform is sufficiently accurate and sensitive to 
quantify much of the transcriptome for stochastic profiling.

Stochastic profiling of epithelial acinar morphogenesis
As a proof of principle, we tested the feasibility of stochastic  
profiling in a 3D culture model of mammary epithelial acinar 
morphogenesis11. We seeded individual MCF10A mammary epi-
thelial cells in reconstituted basement membrane under condi-
tions that promote the formation of proliferation-arrested, hollow 
acinar structures comprised of 50–100 cells when fully mature. 

Each acinus is clonal and thus isogenic, but 
many signaling and cell-fate dichotomies 
nonetheless emerge during morphogene-
sis. For example, matrix-attached cells of 
the outer acinus appear grossly similar but 
have variable expression of phospho-Akt19, 

phospho-myosin light chain20 and the CDK inhibitor p27 (ref. 21).  
The overall extent of such cell-to-cell heterogeneities and their 
role in morphogenesis has not been defined.

We focused the stochastic profiling on matrix-attached cells in 
developing 3D cultures because these cells comprise the final acinar 
structure that resembles the lobular unit of the breast in vivo11. 
Matrix-attached cells are also readily identified in cryosections of 
3D structures and can be microdissected as single cells with high 
accuracy (Supplementary Fig. 6 and Online Methods). We obtained 
transcriptional profiles for 16 independent 10-cell samplings of 
matrix-attached cells along with 16 measurement controls. The 
control samples consisted of independent amplifications from a 
common starting pool of 160 microdissected cells. These amplifica-
tion replicates were used to gauge the measurement error associated 
with profiling gene expression from 10 ‘average’ cells.

Our analysis focused on the 4,557 transcripts that we clearly 
identified in all 32 microarrays (16 samplings plus 16 controls,  
P < 0.1). First, we identified the subset of transcripts whose 
sampling CV was significantly (P < 0.05) higher than the  
corresponding control CV in amplification replicates (Online 
Methods). We reasoned that the independent samplings of such 
transcripts would provide a good estimate for normal biological 
variation with only a minor contribution from measurement 
noise. We eliminated many transcripts from the subset because 
their independent 10-cell sampling measurements were highly 
reproducible. For example, 1,332 genes had a sampling CV <20%, 
meaning that the corresponding control CV would have needed 
to be less than ~10% to be included in the analysis. We presumed 
that the majority of these transcripts were homogeneously 
expressed or show heterogeneities too small or infrequent to be  
detected experimentally.

Next, we clustered the independent measurements of the 1,003 
genes in the subset, using Euclidean distance as a metric to sort 
transcripts roughly by sampling CV (Fig. 3a). We observed a  

Figure 3 | Stochastic profiling of matrix-attached 
cells at day 10 of MCF10A morphogenesis.  
(a) Hierarchical clustering of unscaled sampling 
fluctuations for transcripts with measurable 
biological variation. Genes with sampling 
variations greater than measurement error 
were clutered using a Euclidean distance 
metric and average linkage. The genes with 
consistent CV values (left) were used as the 
reference subset for calculating an appropriate 
reference distribution to test for heterogeneous 
expression. (b) Hierarchical clustering of scaled 
sampling fluctuations for transcripts predicted 
to be heterogeneously expressed by stochastic 
profiling. Candidate heterogeneities were scaled 
to unit variance and clustered using a Euclidean 
distance metric and Ward’s linkage. Selected 
clusters were examined for enriched biological 
functions. Genes consistent with the assigned 
functions are in green.
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plateau of low and consistent sampling CVs, followed by an 
abrupt increase at which sampling fluctuations seemed to become 
more irregular and less random. We defined the transcripts in the 
early plateau as the reference-gene set (Fig. 3a) and found that 
the median sampling CV in this set was 19% with an interquartile 
range of 14–26% (Supplementary Fig. 7a). We fed these empiri-
cally derived parameters into our earlier model and found that 
stochastic profiling should be effective across the entire interquar-
tile range of CVs (Supplementary Fig. 7b). Last, we compared 
sampling fluctuations of individual transcripts to a log-normal 
reference distribution with CVa = 0.19 at a false discovery rate of 
0.05 (Supplementary Fig. 7c). Overall, stochastic profiling identi-
fied 547 genes whose expression we predicted would be strongly 
heterogeneous (12% of all transcripts consistently detected).

Discovery of heterogeneous single-cell programs
We standardized and reclustered the sampling data for the 
candidate heterogeneities to organize genes by their pattern of 
sampling fluctuations (Fig. 3b). The analysis identified multiple 
clusters that had strong links to recognized biological processes. 
The first cluster contained many genes involved in protein syn-
thesis, including ribosomal subunits (RPS6, RPL38 and others), 
initiation-elongation factors (EIF3M and EEF2) and chaperones 
(SEC61G and TBCA). This cluster also contained the basal- 
progenitor markers, KRT5 (ref. 22) and an ALDH isoform23, and 
the JUND transcription factor. The second cluster was comprised 
of several transcripts connected with oxidative-stress responses 
and proliferative suppression, such as PRDX4, FAM120A24, SERP1 
(ref. 25) and FOXO1 (ref. 26). The third cluster was the smallest 
but contained a large proportion of genes known to be initiators 
(ILIR1), effectors (NFKBIA) or markers (BIRC3 and SOD2) of 
NF-κB signaling27. We also observed heterogenous NF-κB sig-
naling post-translationally by localization of the p65 subunit of 
NF-κB and expression of IκBα, an upstream inhibitor of NF-κB  
(Supplementary Fig. 8). Taken together, the correlated sam-
pling fluctuations and shared biological function within clusters  
suggested these were molecular programs that were induced 
heterogeneously in single cells.

We next validated the stochastic-profiling predictions by 
an independent method. We developed an RNA fluorescence  
in situ hybridization (FISH) procedure for dual tracking of 
gene-expression variation in individual cells (Online Methods). 
We optimized our two-color RNA FISH protocol for specificity 
(Supplementary Figs. 9 and 10) and for reliably detecting single-
cell co-regulatory patterns between selected transcripts (Fig. 4a–c). 
Using RNA FISH, we observed pronounced cell-to-cell expression 
heterogeneities for nearly all transcripts identified by stochastic 
profiling that we examined (Fig. 4a–c, Supplementary Fig. 11 and 
Supplementary Note 1). Conversely, we observed more-uniform 
expression for two genes, GAPDH and HINT1, whose stochastic- 
sampling fluctuations were not different than the reference  
distribution (Supplementary Fig. 12). Thus, stochastic profiling 
can separate acute single-cell heterogeneities from transcripts 
with normal expression variability.

For gene pairs in the same cluster, we found highly concord-
ant patterns of strong and weak expression among individual cells  
(Fig. 4a–c, Supplementary Fig. 11 and Supplementary Note 2). 
Analysis of cell-to-cell fluorescence intensities revealed that matrix-
attached cells were almost exclusively ‘double negative’ (weakly 
expressing both genes) or ‘double positive’ (strongly expressing 
both genes) (Fig. 4d). Cells that strongly expressed one gene but not 
the other (‘single positive’) were too rare to constitute a meaningful 
subpopulation and were likely filtered out by stochastic profiling 
(Fig. 4d and Supplementary Fig. 1). Together, this indicates that 
clusters of genes with similar stochastic-sampling fluctuations were 
heterogeneously coexpressed with high probability.

As a final validation, we checked whether genes in separate  
stochastic-profiling clusters were distinguishable on the single-
cell level by RNA FISH. The observed concordance between clus-
ters ranged from no discernable correlation (Fig. 5a–c) to pairs 
with stronger covariation (Fig. 5d–i). Nevertheless, for each gene 
pairing, we repeatedly identified single-positive cells at frequencies  
that should be detected by stochastic profiling (>9–10%,  
Figs. 1i and 5b,e,h). Inclusion of these single-positive cells during 
stochastic sampling would be sufficient to perturb any correlated 
fluctuations, providing an explanation for the distinct clusters 
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and PRDX4 in the stress-response cluster (b) and 
IL1R1 and BIRC3 in the NF-κB cluster (c). Images 
are pseudocolored to highlight quantitative 
differences in fluorescence intensity, and 
single cells showing strong coexpression are 
highlighted with arrows (high expression)  
or flat markers (low expression). Scale bars,  
20 µm. (d) BIRC3–IL1R1 images were segmented 
to quantify average fluorescence intensities in 
single cells as described in Online Methods. Data 
are shown from cells in four independent acini 
after normalization to the maximum observed 
cellular fluorescence signal in each image. Gates 
were defined as the 25th percentile centered on 
the median fluorescence intensity (black lines) 
for each gene. Observations that were in the range of the gates were scored as neither positive nor negative (gray). Single positive cells (red) are shown as 
the percentage of the overall cell population with 90% confidence intervals in parentheses.
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shown in Figure 3b. Indeed, using the RNA FISH measurements 
as the basis for simulated stochastic samplings, we estimated prob-
ability distributions that largely captured the stochastic-profiling 
measurements (Figs. 3b and 5c,f,i).

DISCUSSION
Transcriptional heterogeneities can emerge from purely  
stochastic cell-fate decisions1,2,28, but they can also be instructed 
by differences in the microenvironment29. Stochastic profiling 
does not make a distinction between these heterogeneities but 
provides a means for identifying them so that the underlying 
mechanisms can be studied thereafter. The biggest advantage of 
stochastic profiling is its improved accuracy and reproducibility, 
which became possible when we measured 10 cells instead of 
one. Although measurements are not explicitly single-cell, the 
entire procedure requires only a few hundred cells, meaning 
that stochastic profiling should be amenable to most ex vivo 
tissue specimens.

By applying stochastic profiling to 3D cultures, we identified 
many genes not previously suspected to be heterogeneously 
regulated during morphogenesis. MCF10A cells have a basal-
progenitor expression profile30, suggesting that some hetero
geneities could be due to partial differentiation of single cells in  
three dimensions. The existence of a heterogeneous stress-
response program is particularly intriguing because it raises 
the possibility that individual cells might occupy stressful 
niches caused by local cell-cell interactions and basement-
membrane composition.

Another question is whether the single-cell programs identified 
by stochastic profiling are coordinated during morphogenesis. 
For the gene clusters imaged simultaneously by RNA FISH,  

we found that the single-positive populations were not equally 
populated. For example, high JUND expression could be found  
in cells with low IL1R1 or FOXO1 expression, but cells with the 
opposite pattern were extremely rare (Fig. 5e,h). Future work will 
focus in greater depth on these dependencies and their possible role  
during morphogenesis.

The extent to which heterogeneously activated pathways  
in vivo might obscure phenotypes or create patterns in tissues is 
only beginning to be studied1. The bottleneck is not in studying 
the role of heterogeneities but in identifying them in the  
first place. Stochastic profiling provides a valuable tool for 
analyzing the coordination of such pathways quantitatively 
and systematically.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Monte Carlo simulations. Stochastic sampling simulations (Fig. 1)  
were performed in Matlab (Mathworks) with the statistics tool-
box. For each simulation, the model assumed a binomial distri-
bution for the cellular dichotomy and log-normal distribution 
of measured transcripts13,31. CVa and CVb were varied between 
12–38% to approximate biologically plausible values14 and then 
rerun with empirically derived values (Supplementary Fig. 7a,b). 
The distribution of 48 population-averaged samplings was log-
mean centered and compared to a log-normal distribution with 
an s.d. estimated from 48 reference samplings. The χ2 goodness 
of fit between the dichotomous and reference distributions was 
done using the chi2gof function with 10 bins. The χ2 test directly 
evaluates the relative differences between observed and expected 
values on the sampling histogram and is a robust, conservative 
test for this application32. Bins were pooled if the observed or 
expected value in a bin was less than five. Each CVa, CVb, D and F 
parameter set was run 50 times to measure the median P values 
and the associated nonparametric confidence intervals. Stochastic 
sampling was deemed effective when the median P value for F ≠ 0  
was less than 0.05 and the median P value for F = 0 was greater 
than 0.05. The source code for the simulations is available in 
Supplementary Software.

For the simulation of probability density functions (Fig. 5c,f,i), 
the single-cell FISH intensities from Figure 5b,e,h were randomly 
combined as 10-cell averages for each gene pair for 5,000 itera-
tions. These bootstrapped estimates were standardized and then 
compiled as two-dimensional histograms by using the hist2 func-
tion with 20 bins.

Cell lines. The MCF10A-5E clone was isolated by limiting dilution 
of the parental MCF10A line (American Type Culture Collection) 
and selected for its homogeneous behavior in 3D culture.  
MCF10A-5E cells were maintained as described previously for 
MCF10A cells33.

Frozen sectioning of 3D cultures. To allow embedding of 3D cul-
tures, a plastic coverslip was cut to size and placed at the base of an 
8-well chamber slide (BD Biosciences) before starting. Coverslip-
covered chamber slides were then coated with Matrigel (BD 
Biosciences), and 3D culture of MCF10A-5E cells was performed 
as described previously33. For fresh frozen sections (used for laser 
capture microdissection), coverslips were washed with PBS and 
then embedded directly in Neg-50 (Richard-Allan Scientific) on a 
dry ice–isopentane bath. For fixed frozen sections (used for RNA 
FISH), coverslips were washed in PBS and fixed in 3.7% paraformal-
dehyde for 15 min. After three 5 min washes in PBS, samples were 
cryopreserved in 15% sucrose for 15 min, 30% sucrose for 15 min 
and then embedded in Neg-50 as described above. Sectioning was 
performed at −24 °C on a cryostat (Leica). Embedded specimens 
and cryosections were stored at −80 °C until further use.

Laser capture microdissection. We cut 8 µm sections on plain 
glass slides and kept them at −24 °C during sectioning and −80 °C  
during storage. After removing the samples from −80 °C stor-
age, slides were fixed immediately in 75% ethanol for 30 s, fol-
lowed by distilled water for 30 s. Fixed slides were stained for 30 s 
with nuclear fast red (Vector Laboratories) containing 1 U ml−1 
RNAsin Plus (Promega), then washed twice in distilled water for 15 s. 

Stained slides were dehydrated with an ethanol series (30 s each of 
70%, 95% and 100% ethanol) and cleared with xylene for 2 min. 
After air-drying for 5–10 min, slides were stored in a dessicator 
and used immediately.

Before microdissection, slides were cleaned with a PrepStrip 
(Arcturus) to remove loosely adhered material. Microdissection 
was performed on a Pixcell II instrument (Arcturus) using Capsure 
HS LCM caps (Arcturus). We used 750 µs laser shots at 50–65 mW 
power to achieve single-cell resolution (Supplementary Fig. 6). 
For this study, matrix-attached cells were sampled at 3–4 random 
positions across ~3 acini to focus on matrix-dependent (rather 
than acinus-dependent) heterogeneities. After microdissection, 
LCM caps were cleaned with an adhesive note to remove biologi-
cal material next to the dissected cells.

Small-sample quantitative mRNA amplification. Samples were 
eluted from the microdissection caps by adding 4 µl digestion 
buffer (1.25× MMLV reverse transcriptase buffer (Invitrogen), 
100 µM dNTPs (Roche), 0.08 OD ml−1 oligo(dT)24 and 250 µg ml−1 
proteinase K (Sigma)) and incubating at 42 °C for 1 h. Digested 
samples were centrifuged into PCR tubes and quenched with  
1 µl of digestion stop buffer (1.5 U ml−1 Prime RNAse inhibitor 
(Eppendorf), 1.5 U ml−1 RNAguard (Amersham) and 5 mM 
freshly prepared PMSF). The quenched samples were then proc-
essed by using poly(A) PCR15 that we modified to allow quantita-
tive amplification of high- and low-abundance transcripts.

We transferred 4.5 µl of the quenched samples into thin-walled 
0.2-ml PCR tubes and added 0.5 µl of Superscript III (Invitrogen). 
The first-strand synthesis reaction was incubated at 50 °C for  
15 min and then heat-inactivated at 70 °C for 15 min. The samples 
were placed on ice and centrifuged for 2 min at 18,000g on a bench-
top centrifuge at 4 °C. Next, 1 µl of RNAse H solution (2.5 U ml−1 
RNAse H (USB Corporation) and 12.5 mM MgCl2) was added, 
and the reaction was incubated at 37 °C for 15 min. After RNAse 
H treatment, the reaction was poly(A)-tailed with 3.5 µl of 2.6× 
tailing solution (80 U terminal transferase (Roche), 2.6× terminal 
transferase buffer (Invitrogen) and 1.9 mM dATP) for 15 min at 
37 °C and then heat-inactivated at 65 °C for 10 min. The samples 
were placed on ice and spun for 2 min at 18,000g on a benchtop 
centrifuge at 4 °C. To each sample, 90 µl of ThermoPol PCR buffer 
was added to a final concentration of 1× ThermoPol buffer (New 
England Biolabs), 2.5 mM MgSO4, 1 mM dNTPs (Roche), 100 µg ml−1 
BSA (Roche), 10 U AmpliTaq (Applied Biosystems) and 5 µg AL1 
primer15. Each reaction was split into three thin-walled 0.2-ml  
PCR tubes and amplified according to the following thermal 
cycling scheme: four cycles of 1 min at 94 °C (denaturation),  
2 min at 32 °C (annealing) and 6 min plus 10 s per cycle at 72 °C 
(extension); 21 cycles of 1 min at 94 °C (denaturation), 2 min at  
42 °C (annealing) and 6 min 40 s plus 10 s per cycle at 72 °C (exten-
sion). The tubes were cooled, placed on ice and the reactions from 
three tubes for each sample were pooled and amplified according 
to the following thermal cycling scheme: five cycles of 1 min at  
94 °C (denaturation), 2 min at 42 °C (annealing) and 6 min at  
72 °C (extension). Additional thermal cycling led to overamplifi-
cation and loss of quantitative accuracy (K.A.J. and J.S.B., unpub-
lished observations). Samples were stored at −20 °C until use.

Real-time qPCR. Real-time qPCR of amplified material from sto-
chastic sampling was measured as described previously34, except 
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that tenfold less of each amplified sample was used as the starting 
cDNA template. Primer sequences and concentrations are shown 
in Supplementary Table 1.

Small-sample reamplification and microarray hybridization. 
Amplified small-sample poly(A) PCR cDNA samples were ream-
plified and aminoallyl labeled in a 100 µl reaction containing 
1× High-Fidelity buffer (Roche), 3.5 mM MgCl2, 200 µM dATP, 
dCTP, and dGTP, 40 µM dTTP (Roche), 160 µM aminoallyl-dUTP 
(Ambion), 100 µg ml−1 BSA (Roche), 5 µg AL1 primer and 1 µl 
amplified cDNA. Each reaction was amplified according to the 
following thermal cycling scheme: 1 min at 94 °C (denaturation), 
2 min at 42 °C (annealing) and 3 min at 72 °C (extension). In 
pilot experiments, 20 µl of this reaction for each stochastic sam-
pling was monitored in the presence of 0.25× SYBR Green on a 
LightCycler II real-time PCR instrument (Roche). The number 
of amplification cycles (~20) was selected to ensure that all sam-
ples remained in the exponential phase during amplification35. 
Samples were purified on a PureLink column (Invitrogen), etha-
nol-precipitated and labeled with Alexa Fluor 555 amine-reactive 
dye (Invitrogen) according to the manufacturer’s recommenda-
tion. Labeling efficiency was ~2 dye molecules per 100 bases.

For microarray hybridization, 1 µg Alexa Fluor 555–labeled 
cDNA (total volume, 5 µl) was mixed with 10 µl GEX hybridiza-
tion buffer (Illumina). Samples were denatured at 94 °C for 4 min 
and then added directly to HumanRef-8 Expression BeadChips 
(Illumina) prewarmed to 58 °C. Slides were incubated at 58 °C for 
20 h and washed according to the manufacturer’s recommenda-
tions. After drying, slides were scanned on a BeadArray reader 
(Illumina) with a scan setting of “Direct hybridization 1.” Samples 
were normalized to their mean overall fluorescence intensity rela-
tive to the overall dataset and then to the median fluorescence 
intensity of all transcripts detected (P < 0.1) on each sample for 
subsequent analysis.

Riboprobe synthesis. A 175–225 bp fragment of each gene was 
cloned by PCR into pcDNA3 (Invitrogen) from an MCF10A cDNA 
library generated by first-strand synthesis with Superscript III 
(Invitrogen) and an oligo(dT)24 primer. Plasmids were linearized 
with the appropriate restriction enzymes and purified by phenol-
chloroform extraction and ethanol precipitation. Riboprobes were 
synthesized from the linearized template by using the MAXIscript 
Sp6/T7 kit (Ambion) as recommended, except that in vitro tran-
scriptions were incubated for 2 h and Sp6 in vitro transcriptions 
were performed at 40 °C to increase yield. Digoxigenin (DIG)- 
and dinitrophenyl (DNP)-labeled riboprobes were synthesized 
with 35 mol% DIG–UTP (Roche) or DNP-UTP (Perkin Elmer) 
and 65 mol% unlabeled UTP. After DNAse digestion, riboprobes 
were ethanol-precipitated, resuspended in RNAse-free water to  
0.2 µg ml−1 and stored at −80 °C. The specificity of riboprobes was 
evaluated by comparing the antisense RNA FISH signal intensity 
to the corresponding sense riboprobe (Supplementary Figs. 9 
and 10 and Supplementary Note 3).

Multicolor RNA fluorescence in situ hybridization (FISH). We 
cut 5 µm frozen sections of day 10 3D structures on Superfrost Plus 
slides (Fisher), air-dried them and stored them at −80 °C. Slides 
were thawed at room temperature (23 °C) until completely dry, 
treated with 0.2 N HCl for 10 min and washed in PBS for 5 min.  

Slides were then fixed in 3.7% paraformaldehyde for 15 min, 
washed twice for 10 min in PBS and once in freshly prepared 
0.1 M triethanolamine (pH 8.0) for 10 min. Samples were next 
acetylated with 0.25% acetic anhydride in freshly prepared  
0.1 M triethanolamine (pH 8.0) for 5 min and washed in 2× SSC 
for 10 min. Slides were dehydrated with an ethanol series (2 min 
each of 70%, 95% and 100% ethanol), and sections were covered 
with hybridization solution (1 mg ml−1 yeast tRNA, 10% dextran 
sulfate in 2× SSC, 50% formamide) containing 50–500 ng ml−1 of 
each riboprobe. Sections were covered with Parafilm, sealed with 
rubber cement and incubated at 42 °C in a humidified chamber 
for 14–16 h.

After hybridization, slides were soaked in 2× SSC at 37 °C 
for 5 min, the Parafilm was removed and slides were washed in  
2× SSC, 50% formamide for 30 min at 55 °C, followed by 0.1× SSC 
for 30 min at 55 °C. Slides were equilibrated in PBS for 10 min 
and then blocked for 1 h at room temperature with 1× Western 
Blocking reagent (Roche) in PBS with 0.3% Tween-20. After 
blocking, slides were incubated 1 h at room temperature with  
1× Western Blocking reagent in PBS with 0.3% Tween-20 containing 
anti-digoxin (1:500; Jackson ImmunoResearch) and anti-DNP 
(1:1,000; Invitrogen). Slides were washed three times for 5 min in 
PBS and incubated for 1 h at room temperature with 1× Western 
Blocking reagent in PBS with 0.3% Tween-20 containing Alexa 
Fluor 488–conjugated goat anti-rabbit (1:200; Invitrogen) and 
Alexa Fluor 555–conjugated goat anti-mouse (1:200; Invitrogen). 
Slides were washed three times for 5 min in PBS and cell mem-
branes were labeled with 20 µg ml−1 Alexa Fluor 350–conjugated 
wheat-germ agglutinin for 5 min at room temperature. After two 
5 min washes in PBS, autofluorescence was quenched with 10 mM  
CuSO4 in 50 mM NH4Ac (pH 5.0) for 10 min36. Slides were 
washed with PBS for 5 min and mounted with 0.5% n-propyl 
gallate in PBS with 90% glycerol37.

Immunofluorescence. We cut 5 µm sections of day 10 3D structures  
on Superfrost Plus slides (Fisher), air-dried and stored at −80 °C 
until further use. Slides were thawed at room temperature until 
completely dry, hydrated three times for 5 min in PBS and then 
blocked for 1 h at room temperature with 1× Western Blocking 
reagent in PBS with 0.3% Tween-20. After blocking, slides were 
incubated overnight at room temperature with 1× Western 
Blocking reagent in PBS with 0.3% Tween-20 containing anti-p65 (A)  
(1:100; Santa Cruz) or anti-IκBα (C-21) (1:500; Santa Cruz). 
Slides were washed three times for 5 min in PBS and incubated for 
1 h at room temperature with 1× Western Blocking reagent in PBS 
with 0.3% Tween-20 containing Alexa Fluor 555–conjugated goat 
anti-rabbit (1:200; Invitrogen). Slides were washed three times  
for 5 min in PBS and counterstained with 0.5 µg ml−1 DAPI 
(Sigma) for 5 min at room temperature. After two 5 min washes 
in PBS, autofluorescence was quenched with 10 mM CuSO4 in 
50 mM NH4Ac (pH 5.0) for 10 min36. Slides were washed with 
PBS for 5 min and mounted with 0.5% n-propyl gallate in PBS 
with 90% glycerol37.

Microscopy. Frozen sections and coverslips were imaged with 
a 40× 1.3 numerical aperture (NA) oil objective on a BX51 
upright fluorescence microscope (Olympus) with the following 
filter sets: ET-DAPI (excitation, 325–375 nm; dichroic, 400 nm; 
and emission, 435–485 nm), ET-FITC (excitation, 450–490 nm; 
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dichroic, 495 nm; and emission, 500–550 nm), ET-CY3 (exci
tation, 520–570 nm; dichroic, 565 nm; and emission, 570–640 nm)  
and ET-CY5 (excitation, 590–650 nm; dichroic, 660 nm; and 
emission, 665–735 nm). Images were captured with an Orca R2 
CCD camera (Hamamatsu) at 2 × 2 binning and exposure times  
that filled 90% of the camera bit depth, with the exception of the 
RNA FISH sense controls (Supplementary Figs. 9 and 10) where 
the exposure time was matched to the antisense image. Displayed 
images were rainbow-pseudocolored with a linear lookup table that 
covered the full range of the data for each fluorescence channel.

Image segmentation and quantification. Single cells from RNA 
FISH images were segmented by hand based on wheat-germ agglu-
tinin staining (DAPI channel), and traced image segments were 
then applied to the DIG- and DNP-labeled riboprobe stainings 
(FITC and Cy3 channels). Median fluorescence intensities per cell 
for each riboprobe were calculated, and individual images were 
normalized to the maximum observed intensity in each channel 
for comparison across multiple images.

Statistical analysis. Statistical analyses of real-time qPCR 
measurements were performed on the cycle thresholds of the meas-
ured genes. This is equivalent to a log2 transformation, which allows 
log-normal distributions to be treated as normal distributions13,31. 
Estimation of the coefficient of variation for amplification repli-
cates (Fig. 2i) was done in Igor Pro (WaveMetrics) by nonlinear 
least-squares curve fitting of the mean-centered cycle thresholds 
to a normal distribution with a mean of zero. Confidence intervals 

on CVs were calculated with McKay’s transformation38, and non-
overlapping 90% confidence intervals were considered significantly 
different (P < 0.05)39. χ2 goodness-of-fit tests for sampling fluctua-
tions were performed in MATLAB with the chi2gof function, a mean 
of zero and an s.d. equal to the reference distribution (false discovery 
rate = 0.05). Nonparametric confidence intervals for the RNA FISH 
subpopulations were based on a binomial distribution.

31.	 Warren, L., Bryder, D., Weissman, I.L. & Quake, S.R. Transcription factor 
profiling in individual hematopoietic progenitors by digital RT-PCR.  
Proc. Natl. Acad. Sci. USA 103, 17807–17812 (2006).

32.	 Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical 
Procedures 4th edn. (Chapman & Hall, New York, 2007).

33.	 Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and 
oncogenesis of MCF-10A mammary epithelial acini grown in three-
dimensional basement membrane cultures. Methods 30, 256–268 (2003).

34.	 Miller-Jensen, K., Janes, K.A., Brugge, J.S. & Lauffenburger, D.A. Common 
effector processing mediates cell-specific responses to stimuli. Nature 
448, 604–608 (2007).

35.	 Nagy, Z.B. et al. Real-time polymerase chain reaction-based exponential 
sample amplification for microarray gene expression profiling. Anal. 
Biochem. 337, 76–83 (2005).

36.	 Schnell, S.A., Staines, W.A. & Wessendorf, M.W. Reduction of lipofuscin-
like autofluorescence in fluorescently labeled tissue. J. Histochem. 
Cytochem. 47, 719–730 (1999).

37.	 Giloh, H. & Sedat, J.W. Fluorescence microscopy: reduced photobleaching 
of rhodamine and fluorescein protein conjugates by n-propyl gallate. 
Science 217, 1252–1255 (1982).

38.	 McKay, A.T. Distribution of the coefficient of variation and the extended 
‘t ’ distribution. J. R. Stat. Soc. A 95, 695–698 (1932).

39.	 Julious, S.A. Using confidence intervals around individual means to 
assess statistical significance between two means. Pharm. Stat. 3, 
217–222 (2004).

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.


	Identifying single-cell molecular programs by stochastic profiling
	RESULTS
	Stochastic sampling of expression dichotomies
	Theoretical validation of stochastic sampling
	Optimization of small-sample PCR for stochastic profiling
	Adapting small-sample PCR to oligonucleotide microarrays
	Stochastic profiling of epithelial acinar morphogenesis
	Discovery of heterogeneous single-cell programs

	DISCUSSION
	Methods
	ONLINE METHODS
	Monte Carlo simulations.
	Cell lines.
	Frozen sectioning of 3D cultures.
	Laser capture microdissection.
	Small-sample quantitative mRNA amplification.
	Real-time qPCR.
	Small-sample reamplification and microarray hybridization.
	Riboprobe synthesis.
	Multicolor RNA fluorescence in situ hybridization (FISH).
	Immunofluorescence.
	Microscopy.
	Image segmentation and quantification.
	Statistical analysis.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Small-sample profiling by stochastic sampling can be used to distinguish transcriptional heterogeneities from normal biological variation.
	Figure 2 Quantitative and reproducible small-sample amplification of high-, medium- and low-abundance transcripts from 3–100 cells.
	Figure 3 Stochastic profiling of matrix-attached cells at day 10 of MCF10A morphogenesis.
	Figure 4 Stochastic profiling identifies clusters of heterogeneously coexpressed transcripts.
	Figure 5 Stochastic profiling distinguishes heterogeneous expression patterns that are not exclusively coexpressed.




