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It has been estimated that 1011–1012 cells, primarily of haematogenous origin, die in the adult human body daily, and a
similar number is regenerated to maintain homeostasis. Despite the presence of an efficient scavenging system for
dead cells, considerable amounts of fragmented genetic material enter the circulation in healthy individuals. Elevated blood
levels of extracellular nucleic acids have been reported in various disease conditions; such as ageing and age-related
degenerative disorders, cancer; acute and chronic inflammatory conditions, severe trauma and autoimmune disorders. In
addition to genomic DNA and nucleosomes, mitochondrial DNA is also found in circulation, as are RNA and microRNA.
There is extensive literature that suggests that extraneously added nucleic acids have biological actions. They can enter into
cells in vitro and in vivo and induce genetic transformation and cellular and chromosomal damage; and experimentally
added nucleic acids are capable of activating both innate and adaptive immune systems and inducing a sterile
inflammatory response. The possibility as to whether circulating nucleic acids may, likewise, have biological activities
has not been explored. In this review we raise the question as to whether circulating nucleic acids may have damaging
effects on the host and be implicated in ageing and diverse acute and chronic human pathologies.
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1. Introduction

Nucleic acids that are no longer confined within cells but are
dispersed in body fluids or in circulation are termed circu-
lating nucleic acids (CNAs). It is now well established that
measurable quantities of nucleic acids circulate in healthy
individuals as well as in patients with various disease pa-
thologies. The origin, nature and the precise mechanism(s)
as to how nucleic acids end up extracellularly are not fully
understood. Accumulating evidence suggests that these mol-
ecules are preferentially released in circulation in the form of
nucleosomes through apoptosis and necrosis. In addition,
other types of nucleic acids have been detected in the circu-
lation that includes DNA, RNA, mitochondrial DNA and
microRNA. Although CNAs are shown to have promising
diagnostic utility as biochemical and genetic biomarkers for
a variety of pathologies especially cancer, there is deficiency
in our knowledge about the functional significance of CNAs.
In this article, we provide several lines of evidence pointing

to potential patho-physiological functions of CNAs that have
remained unexplored.

2. Origin and nature of CNAs

CNAs in plasma and serum include various forms of nucleic
acids, viz. nucleosomes, DNA, RNA, miRNA and mitochon-
drial DNA (Peters and Pretorius 2011). Supported by theory
and observation, two major sources of CNAs have been
postulated: first, fragmented DNA released as a consequence
of cell death (apoptotic/necrotic) and, second, active meta-
bolic secretion of DNA from cells (Gahan et al. 2008).
Several hundred billion cells divide daily in the human body
and the same number is lost through apoptosis to maintain
cellular homeostasis (Fliedner et al. 2002; Nagata et al.
2010). Although apoptosis is an evolutionary conserved
phenomenon and the apoptotic debris is removed from cir-
culation via efficient clearance mechanisms, a proportion of
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CNAs in the form of fragmented DNA and nucleosomes
escape complete degradation or scavenging by macrophages
(Fleischhacker and Schmidt 2007). Approximately 1–10 g of
DNA from nucleated leukocytes, which include lympho-
cytes, monocytes and granulocytes, is degraded each day in
the human body by inter-nucleosomal fragmentation (van
der Vaart and Pretorius 2008). Although during necrosis or
tissue injury, DNA in the range of few kilo- to megabases of
nucleotides is randomly degraded by simultaneous activation
of lysosomal proteases and nucleases, a proportion escapes
degradation and is released into circulation (van der Vaart
and Pretorius 2008). DNA in plasma being primarily double-
stranded yields a ladder pattern (180–1000 bp) on electropho-
retic separation, suggesting that necrosis is unlikely to be a
major source of circulating DNA under normal conditions
(Jahr et al. 2001). Active release of newly synthesized ‘met-
abolic’ DNA has also been proposed as a source of circulating
DNA. This form of DNA is usually complexed with glycoli-
poproteins and has associated RNA, and has been shown to be
shed from cells in vitro (van der Vaart and Pretorius 2007).

CNAs in plasma are not ‘naked’ but circulate in the form of
complexes bound to proteins and lipids. Since plasma/serum
are rich in various endonucleases, most pure forms of DNA are
degraded rapidly (Fleischhacker et al. 2011). Metabolic DNA
secreted by cells, being highly negatively charged molecules,
bind to plasma proteins. Specialized kits are now commercial-
ly available for direct extraction and estimation of DNA from
plasma and serum. The isolation and estimation of DNA
require extraction from plasma, and hence the characterization
of the protein molecules to which they were bound while in
circulation has not been possible. Chromatin, because of its
highly organized association with histone proteins, is
protected from nuclease digestion (Holdenrieder et al.
2001b). Fragments of chromatin are derived from apoptotic
cells and are cleaved by endonucleases present in circulation
into oligo- and mono-nucleosomes (Holdenrieder and
Stieber 2009).

In addition to DNA, and nucleosomes, mitochondrial
DNA has also been identified in circulation (Chiu et al.
2003). The presence of a known mitochondrial DNA muta-
tion in plasma and serum of patients with type 2 diabetes
mellitus has been reported (Zhong et al., 2000). Data from
studies conducted in age-related degenerative diseases and
malignancies confirm the existence of both particle-
associated and non-particle-associated forms of mitochon-
drial DNA in plasma (Mehra et al. 2007; Zachariah et al.
2008; Tsai et al. 2011).

Extracellular RNA in serum/plasma has also been de-
scribed (Wieczorek et al. 1987). Given the fact that RNA
is a labile molecule, and plasma being an enriched source of
RNase, the notion that cell-free RNA could survive in plas-
ma was not easily accepted. Subsequently, Kopreski and
co-workers unequivocally demonstrated the presence of

tumour-associated RNA in plasma of cancer patients
(Kopreski et al. 1999). Since then, this observation has been
confirmed and it seems clear that the presence of circulating
RNA is an ubiquitous phenomenon (Vlassov et al. 2010).
Recently, microRNAs (miRNAs), a class of 19–23 nucleo-
tides long, post-transcriptional gene expression regulators,
have been found in extracellular human body fluids includ-
ing plasma and serum (Pritchard et al. 2011). Most of the
miRNAs that circulate in blood of both healthy and diseased
subjects are highly stable and withstand the ribonuclease ac-
tivity of plasma (Mitchell et al. 2008). miRNAs are released
from cells through a ceramide-dependent secretory mecha-
nism and are entrapped in lipid or lipoprotein complexes
such as apoptotic bodies, microvesicles (up to 1 μm) or in
small membrane vesicles of endocytic origin called exo-
somes (50–100 nm) (Iguchi et al. 2010; Kosaka et al.
2010). It is also likely that large parts of extracellular circu-
lating miRNAs are by-products of dead or dying cells that
persist due to the high stability of the miRNA/Argonaute
2 binding complex (Wentz-Hunter and Potashkin 2011;
Schöler et al. 2011).

There is no consensus as to whether plasma or serum is a
better source of CNAs. The amount of DNA in serum can be
2 to 24 times higher than in plasma and most of this is
attributed to the release of nucleic acids from destroyed
leukocytes during the clotting process (Chan et al. 2005).
Comparison of DNA yield from serum obtained from fresh
(2 h) and stored (24 h) samples also verified that cell lysis
during the clotting process contributes markedly towards
variations that exist between serum and plasma (Jung et al.
2003). On an average, in healthy individuals, a DNA range
of between 0 and >1000 ng per mL of blood with a mean of
30 ng/mL have been reported (Board et al. 2008). However,
it is difficult to draw any firm conclusions about blood levels
of DNA from these studies since a variety of different
methodologies were used for isolation of DNA by different
laboratories. Several novel isolation and quantification strat-
egies have now been developed to determine the nature of
DNA present in circulation. With the help of magnetic bead
systems, silica-column isolation methods and a variety of
fluorescence quantification approaches, it is now possible to
detect DNA in plasma and serum of healthy and diseased
individuals (van der Vaart and Pretorius 2010).

The most commonly used technique for measuring nucleo-
somes in serum has been the Cell Death Detection ELISAPlus,
which is commercialized by Roche Diagnostics. The kit is a
sandwich immunoassay that utilizes simultaneously two
monoclonal antibodies, one each against DNA and histones
(Salgame et al. 1997). The kit was originally designed to
measure apoptosis, but was later modified by Holdenreider
et al., so that the assay is more applicable to nucleosomes in
serum/plasma, and is more reproducible (Holdenrieder et al.
2001c). The results are expressed in arbitrary units (AU).

302 I Mittra, NK Nair and PK Mishra

J. Biosci. 37(2), June 2012



3. CNAs in health and disease

CNAs have been detected in healthy individuals and their levels
vary from scantly detectable to few micrograms per litre, but in
higher concentrations in several disease conditions. Excellent
reviews are available on the presence of DNA, RNA and
nuclesomes in various pathological states (Rykova et al.
2010; Swarup and Rajeswari 2007; Holdenrieder and Stieber
2009). The presence of DNA in plasma of patients with
systemic lupus erythematosus (SLE) was demonstrated for
the first time in 1966 and several reports have appeared since
then (Tan et al. 1966; Pisetsky and Ullal 2010). Galeazzi et
al. characterized the pattern of DNA in circulation and
demonstrated that DNA has an anomalous pattern in SLE,
thus implicating a biological role of DNA in this disease
(Galeazzi et al. 2003). Practically all published articles are in
consensus that the concentrations of DNA and nucelosomes
in individuals with cancer are higher than normal (Gal et al.
2004; Sozzi et al. 2001; Umetani et al. 2006; Holdenrieder
et al. 2001a; Kuroi et al. 1999; Trejo-Becerril et al. 2003). A
considerable increase in nucleosomes levels following radio-
chemotherapy has been observed (Kremer et al. 2005). In
patients with systemic inflammation and sepsis, apoptosis
resulting from the action of excessive amounts of inflamma-
tory cytokines on cells is directly responsible for the elevated
levels of nucleosomes in plasma of these patients (Zeerleder
et al. 2003). DNA concentrations (of non-mitochondrial
and mitochondrial origin) were significantly higher in
plasma of patients with severe sepsis or septic shock
(Saukkonen et al. 2008; Rhodes et al. 2006), blunt traumatic
injury (Lam et al. 2004) and burn injury (Chiu et al. 2006).
Elevated levels of CNAs have been reported in diabetes,
cerebral stroke and myocardial infarction, and in the
case of the latter two, the levels of nucleosomes and
DNA in plasma correlate with the severity of the dam-
age (Butt et al. 2006; Geiger et al. 2006; Chang et al. 2003).
Comparative levels of nucleosomes in sera of healthy vol-
unteers, and patients with diabetes, renal failure, sepsis and
cancer, both before and after they received chemo- or radio-
therapy, are shown in figure 1. Investigations using real-time
quantitative PCR and counter-immunoelectrophoresis have
detected increased amounts of DNA in plasma of patients
with severe injuries, organ failure, multiple organ dysfunc-
tion syndromes, pulmonary embolism, preeclampsia and
Whipple’s disease (Lam et al. 2003; Barada et al. 1980;
Zhong et al. 2005; Benoit et al. 2007). Subsequent reports
have demonstrated significantly elevated levels of nucleic
acids in other disease conditions such as in rheumatoid
arthritis, hepatic autoimmune diseases, connective tissue dis-
eases and vasculitis associated antineutrophil cytoplasmic
antibodies (ANCA) (Koffler et al. 1973; Holdenrieder

et al. 2006). Elevated levels of DNA have been found in
patients who have undergone organ transplantation (Lui et al.
2003). Foetal DNA has been detected in maternal plasma
and has been used for prenatal diagnosis of foetal abnormal-
ities (Chiu and Lo 2004). mRNAs in significantly higher
amounts have been detected in patients with diabetic reti-
nopathy and diabetic nephropathy (Butt et al. 2006).

4. CNAs as biomarkers

Considerable research effort has been expended on the use of
CNAs as biomarkers in cancer (For review Schwarzenbach
et al. 2011; Holdenrieder et al. 2008). CNAs from malignant
conditions have characteristic changes like mutations, dele-
tions, methylations and microsatellite aberrations which are
distinct from those in benign conditions, and thus might be
useful in diagnosis of cancer (Shapiro et al. 1983; Nawroz
et al. 1996; Botezatu et al. 2000). Recent genomic analysis
using Affymetrix SNP 6.0 arrays to determine tumour-
specific copy number variation (CNVs) in circulating DNA
from patients with breast cancer could achieve a clear sepa-
ration between patients and healthy controls; and specific
CNVs were detected in DNA in circulation up to 12 years
follow-up after diagnosis and treatment in asymptomatic
patients (Shaw et al. 2012). The integrity of circulating
DNA, defined as the ratio of longer fragments to total
DNA, is linked to stage, tumour size and nodal metastases
in breast cancer (Umetani et al. 2006). Levels of DNA and
nucleosomes have been used as tumour markers, as well as
prognostic and predictive biomarkers of cancer therapy
(Zimmermann et al. 2007; Mancuso et al. 2010; Shacter

Figure 1. Levels of serum nucleosomes in healthy subjects and
diseased states (mean ±SE; 30 subjects in each group). Nucleosome
levels were measured using the Cell Death Detection ELISAPlus kit
(Roche Apllied Sciences, Mannheim, Germany). Values are
expressed as arbitrary units. CT/RT = chemotherapy/radiotherapy.
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and Weitzman 2002). DNA levels decreased after surgery in
breast cancer patients (Huang et al. 2006). The levels of
CNAs vary during the course of follow-up of patients after
chemotherapy/radiotherapy. After chemotherapy, peak lev-
els of CNAs were seen at 24–72 h followed by a decline in
levels (Holdenrieder et al. 2001a; Umetani et al. 2006).
Declining levels of nucleosomes after chemotherapy sug-
gests remission, while consistently increasing levels suggest
progression (Holdenrieder et al. 2001a; Kuroi et al. 2001).
Furthermore, the rise in nucleosomes values are more pro-
nounced in patients who are responsive to chemotherapy
compared with non-responsive patients (Mueller et al.
2006). Apart from cancer, Chiu et al. demonstrated that
elevated levels of DNA after burn injury significantly corre-
lated with some of the outcome measures and severity of the
injury (Chiu et al. 2006). It has been reported that elevated
levels of CNAs found in sepsis correlate with mortality from
this condition (Rhodes et al. 2006).

5. Biological effects of nucleic acids

5.1 Cellular uptake and genomic integration

Horizontal transfer of DNA is widespread in bacteria and
plays an important role in the development of antibiotic
resistance and adaptation to new environments (Lake et al.
1999; Ochman et al. 2000). Exchange of genetic material
between cells in plant tissue grafts is also known to occur
(Stegemann and Bock 2009). There is extensive literature
published in the 1960s and 1970s to indicate that eukaryotic
cells can, under experimental conditions, take up extrane-
ously added DNA and RNA (for review: Bhargava and
Shanmugam 1971; Gahan and Stroun 2010). There seems
to be no source specificity of the donor DNA, and every type
of DNA tested has been found to be taken up by recipient
cells (Bhargava and Shanmugam 1971). Heterologous DNA
after cellular entry is extensively degraded, but a small
proportion has been shown to be integrated into the recipient
cell genome (Gartler and Pavlovskis 1960; Gartler 1959;
Ayad and Fox 1968). Exogenously added DNA can infre-
quently induce genetic transformation of the recipient cells.
For example, it has been observed that inosinic acid pyro-
phosphorylase −ve (IMPPase −ve) D98S human cells can be
genetically transformed by DNA from IMPPase +ve cells so
that the treated cells survive under highly selective condi-
tions (Szybalska and Szybalski 1962). Evidence is also
available that strongly suggests DNA taken up by mamma-
lian cells can be replicated, transcribed and translated into
proteins (Szybalska and Szybalski 1962; Szybalski et al.
1962, cited by Bhargava and Shanmugam 1971). Radioac-
tively labelled DNA when injected in vivo is taken up by
tissue cells as demonstrated by autoradiography or by

monitoring radioactive counts (Yoon 1964; Yoon and Sabo
1964). Bacterial DNA metabolically labelled with 3H-thymi-
dine injected intra-peritoneally has been shown to cross the
blood–brain barrier to be incorporated in to the nuclei of
brain cells as detected by auto-radiography (Anker and
Stroun 1972). When mice were intra-peritoneally injected
with live bacteria together with 3H-uridine followed by in-
jection of an antibiotic to kill the organisms, radioactive
uridine could be recovered from the brains of the injected
animals (Anker and Stroun 1972). Taken together, these
experiments suggest that DNA is capable of being incorpo-
rated and transcribed in the brain cells of experimental
animals. This phenomenon forms the basis of DNA vaccines
that are currently being widely experimented with (Kutzler
and Weiner 2008). SW 480 colon carcinoma cells containing
K-ras mutation in both alleles are known to release DNA
containing the mutated oncogene into the culture medium.
When the latter was added to mouse fibroblast cells, the
presence of the mutated K-ras gene was confirmed in the
recipient cells, which also showed foci of transformation
(Anker et al. 1994). Exogenously added DNA has been
reported to induce chromosomal damage (Woll 1953;
Karpfel et al. 1963). The karyotype of chick embryo cells
was grossly altered by the addition of bovine DNA (Kok
1959, cited by Bhargava and Shanmugam 1971). Abnormal
anaphase cells were observed in bone marrow cells treated
with heterologous DNA from spleen or thymus (Karpfel et al.
1963). More recently, it was reported that when mouse
fibroblasts cells were cultured in the presence of plasma
from patients with colon cancer carrying K-ras mutation,
the oncogene sequence was detectable in the recipient cells
upon PCR analysis. Moreover, the treated mouse fibroblasts
when injected into immune deficient mice were capable of
inducing tumours that also showed the presence of K-ras
sequences (García-Olmo et al. 2010).

Histones have been shown to be present in circulation,
and extracellular histones are cyctotoxic to endothelial cells
in vitro and are lethal when injected into mice (Xu et al.
2009). Histones can directly translocate across cell mem-
branes by a process that does not involve endocytosis in a
non-energy-dependent manner (Hariton-Gazal et al. 2003).
Penetration of DNA associated with histones (as nucleoso-
mal units) into intact cells involves a ‘non-specific’ form of
non-covalent ionic interaction with plasma membrane. The
ability of histones to carry DNA inside the cell is an energy-
dependent event but the potential varies among different
histones. Given the electrostatic nature of DNA, the level
of positive charge of histones imparts stability and ability to
transport DNA as a mobile unit (Hariton-Gazal et al. 2003).
It has been shown that cell surface proteoglycans can bind
nucleosomes, while DNA has been shown to enter into cell
through the toll-receptor system (Watson et al. 1999; Barton
et al. 2006; Dalpke et al. 2006).

304 I Mittra, NK Nair and PK Mishra

J. Biosci. 37(2), June 2012



It was recently shown that when isolated genes are recon-
stituted into chromatin in vitro, they readily entered into host
cells and could be localized in their nuclei. It was suggested
that reconstituted nucleosomes could be used as a vehicle for
gene therapy (Wagstaff et al. 2008). Nucleosomes, purified
from calf thymus, when added to isolated lymphocytes from
healthy individuals and patients suffering from lupus
erythematosus, induced cell death which could be abol-
ished by prior treatment with DNase I, proteinase K or
nucleosome-specific antibody (Decker et al. 2003).
Figure 2 shows that nucleosomes recovered from serum that
have been fluorescently labelled in their DNA are readily
taken up by isolated lymphocytes and they are localized
within the nuclei within 6 h. The lymphocytes are seen to
be undergoing apoptotic changes. A markedly greater in-
crease in the induction of apoptosis in isolated lymphocytes
is observed following addition of plasma from patients suf-
fering from sepsis and diabetes compared with plasma from
healthy controls (figure 3). The specific involvement of
nucleosomes in inducing apoptosis is indicated by the
fact that the apoptotic activity is markedly reduced when
plasma is immune-adsorbed in an affinity column con-
taining biotinylated anti-histone antibodies bound to
streptavidin beads. Much of the activity is recovered
when the bound nucleosomes are eluted and added to
lymphocytes in culture (figure 3).

It would appear from earlier studies that chromosomes or
chromosomal fragments behave in a fashion similar to nucle-
osomes. When radioactively labelled isolated homo- or heter-
ologous chromosomes were added to different cultured cells,
they got readily incorporated into the host cell chromosomes
after undergoing extensive fragmentation (Chorazy et al.
1963; Burkholder and Mukherjee 1970; Ittensohn and
Hutchison 1969; Yosida and Sekiguchi 1968). The recipient
cells often showed pronounced cytotoxic effects and cyto-
logical changes such as vacuolated cells, micro-nuclei and
nucleosomes and chromosome-like inclusion bodies

(Ittensohn and Hutchison 1969). Chromosome-mediated
gene transfer techniques are well established in which a free
functional chromosome fragment containing the relevant
gene can be readily taken up and retained in the genomes
of the progeny for many generations (for a review, see
McBride and Peterson 1980).

RNA from heterologous cells that are radioactively la-
belled are also taken up by host cells, and radioactivity could
be detected in the RNA isolated from the treated cells
(Shanmugam and Bhargava 1966; Shanmugam and
Bhargava 1969; Niu et al. 1968). It has been recently shown
that exogenously added RNA can be translated into proteins.
When naked luciferase-encoding mRNA were added to a
variety of cells in culture, not only were the mRNA actively
taken up by the cells, but they were also expressed in to
translated fluorescent proteins (Lorenz et al. 2011). Finally,
although little information is available on the effects of
mitochondrial DNA, isolated mitochondria can cause dam-
age to cells, leading to inflammation (Zhang et al. 2010).

5.2 Immunological effects and inflammation

The recognition of a role for CNAs (possibly in the form of
nucleosomes) in immune activity dates to its discovery as a
target antigen in SLE, and the recent identification of pattern
recognition receptors has suggested a potential role for en-
dogenous CNAs as activators of the innate immune system
(Tan 1989; Kawashima et al. 2011). Tissue damage leads to
the release of CNAs when cells undergo apoptosis or necro-
sis (Pisetsky 2007). It has been demonstrated that DNA
derived from host cells, or chemically synthesized double-
stranded DNA, can activate both immune and non-immune
cells when introduced into the cytosol of recipient cells. The
cellular response does not depend upon the nucleotide se-
quence but on the double-stranded helical nature of the
molecule (Suzuki et al. 1999). It has been experimentally

Figure 2. Nucleosomes isolated from serum are taken up by lymphocytes in culture and are localized in their nuclei. The treated cells
exhibit apoptotic changes. The left photomicrograph is of untreated cells while the right one is of treated cells. Nucleosomes were labelled
in their DNA using 564 Alexa-dUTP and added to lymphocytes isolated from healthy subjects and examined after 6 h treatment. Scale bar=
5 μm.
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demonstrated that exposure of immune cells to double-
stranded DNA activates a set of genes, including those
encoding major histo-compatibilty complex, co-stimulatory
molecules and interferon regulating factors (Ishii et al.
2001). Signalling through these receptors triggers the acti-
vation of kinases such as TBK1 and Ikki, and the down-
stream phosphorylation of transcription factors IRF3 and
NFкβ. Numerous studies have noted a robust pro-
inflammatory cytokine response upon stimulation of macro-
phages and innate immune cells with double-stranded DNA
(Hefeneider et al. 1992; Tanner 2004; Choi et al. 2005).
Recently, several proteins have been identified that sense
extracellular nucleic acids and act as inducers of interferon
(IFN) (Rock et al. 2011; Kawasaki et al. 2011). Normally,
DNAse participates in degradation of inefficiently cleared
CNAs released from dying cells (Gaipl et al. 2006). Defi-
ciency of DNAse I, and the consequent inadequate removal
of DNA from nuclear antigens, promotes susceptibility to-
wards autoimmune disorders (Kawane et al. 2001, Kawane
et al. 2006). DNAse I-deficient mice exhibit classical symp-
toms of lupus. Hepatic macrophages from DNase-II-
deficient mice fail to digest DNA from engulfed apoptotic
cells and secrete type I IFN, resulting in severe anaemia and
chronic arthritis. Mice deficient in DNase III develop inflam-
matory myocarditis and premature mortality accompanied by
cells that accumulate extra-nuclear DNA. Defective phago-
cytosis of apoptotic macrophages in diabetes-prone mice
result in accumulation of extracellular nucleic acids that are
capable of promoting autoimmunity (O'Brien et al. 2006).

Nucleosome is the main lupus auto-antigen and is be-
lieved to play a key role in disease development since it is
found as a circulating complex and since both auto-reactive
nucleosome-specific B and Th lymphocytes are detected in

patients’ sera (Williams et al. 2001). Moreover, the levels of
both anti-nucleosome auto-antibodies and circulating nucle-
osomes have been shown to be associated with disease
activity (Decker 2006). Purified nucleosomes induce cell
death of normal and lupus lymphocytes ex vivo in a dose-
and time-dependent manner, and this activity could be abol-
ished when nucleosomes were first treated with DNase I,
proteinase K or with a specific monoclonal antibody. Intra-
venous injection of purified nucleosomes resulted in apopto-
sis and a reduction in spleen cell count compared with that in
control mice (Decker et al. 2003). Nucleosomes have been
shown to activate several types of immune cells as well
as the complement system, resulting in inflammation
(Hefeneider et al. 1992). Nucleosomes released from dying
cells have been posited to act as pro-inflammatory media-
tors, although mechanistic insights into the inflammatory
stimulus are not well understood. Nonetheless, collateral
damage that occurs during sterile inflammation can be sig-
nificant. Unresolved and uncontrolled inflammation for a sus-
tained period activates an ‘injury loop’ in which inflammation-
derived injury leads to additional inflammation. Inflammation-
induced damage to important cellular components (e.g. DNA,
proteins and lipids) through release of pro-inflammatory signal-
ling mediators can directly or indirectly contribute to tissue
injury. A strong correlation exists between the level of circulat-
ing nucleosomes and inflammatory cytokines in serum of
healthy individuals, as shown in figure 4. This raises the
possibility that CNAs may have a patho-physiological role
to play in vivo under normal conditions.

Although nucleic acids are generally not considered as
signals of damage-associated molecular patterns (DAMPs),
their release during cellular stress or tissue injury and their
role in mediating a sterile inflammatory response has been

Figure 3. Critical role of nucleosomes in enhanced lymphocyte apoptosis induced by plasma from patients suffering from sepsis and
diabetes. Plasma from 30 patients suffering from sepsis and diabetes and an equal number of age- and sex-matched healthy volunteers was
used for this study. Lymphocytes isolated from healthy subjects were treated in individual experiments with plasma (100 μL) and the
apoptotic index was measured by flow cytometry after labeling with annexin v following 24 h treatment. The figures show marked increase
in apoptosis in sepsis and diabetes. The apoptotic index is greatly reduced following immune adsorption of plasma in an affinity column
containing biotinylated anti-histone antibodies bound to streptavidin. The apoptotic activity could be largely restored when the bound
nucleosomes were eluted (0.25 M Nacl) and used for treatment.
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recorded (Lotze et al. 2007). Sterile inflammation has been
implicated in several disease processes including gout,
chemically induced pulmonary interstitial fibrosis, trauma,
ischaemia-reperfusion injury, atherosclerosis, Alzheimer’s
and cancer (Chen and Nuñez 2010). Although inflammation
is important in tissue repair, unresolved, chronic inflamma-
tion that occurs when the offending agent is not removed, or
present in the circulation, can prove detrimental to host
immunity. Inefficient clearance of apoptotic cell remnants
can result in the accumulation of nucleic acids that can
insinuate a self-cascade cycle responsible for the initiation
of systemic inflammation (Nagata and Kawane 2011). Sub-
clinical levels of inflammation may contribute little, but
when the damage is substantial or repetitive, inflammation
can be an important etiological factor that underlies the
pathogenesis of a number of diseases.

Mitochondria can also damage tissue cells. Mitochondria
contain several copies of a circular genome (mtDNA) that
code for key proteins of the oxidative phosphorylation sys-
tem. When enzymes of the latter system are degraded, they
give rise to formyl peptides. When cells are coping with an
insult that is potentially harmful, mtDNA and degraded
formyl peptides can be released into the surrounding milieu
and can trigger inflammation (Zhang et al. 2010). The con-
ditions in which these mitochondrial alarmins are generated
and their possible role in chronic inflammatory state is only
just beginning to be appreciated.

5.3 Role in ageing

The accumulation of somatic DNA mutation and damage
increases with age as a result of exposure to a variety of toxic
or damaging substances, such as free radicals (Nusbaum
1998). DNA damage contributes to aging by inducing cellu-
lar senescence, apoptosis and cell dysfunction (Best 2009).
The fragility of lymphocytes is known to increase with age,
and the variety of cellular damage with increasing age is

accompanied by a chronic low-grade inflammation (Esposito
et al. 1989; Franceschi 2007). Correspondingly, various
biomarkers of inflammation have also been shown to in-
crease with age (Bandeen-Roche et al. 2009; Hsu et al.
2009). Increasing levels of cell-free DNA also accompany
advancing age. In a study of 12 nonagerian women and 11
young people aged 22–37 years, it was observed that the
concentration of cell-free DNA was significantly higher in
the former group. Furthermore, the DNA differed qualita-
tively between the two groups, in that in the nonagenarians a
fragmented pattern of low-molecular weight DNA was ob-
served in a majority of the women (Jylhävä et al. 2011). A
strong correlation exists between the levels of circulating
nucleosomes and age of healthy individuals, and this is
shown in figure 5. Thus, there seems to be a tantalizing

r=0.295, p=0.001 r=0.360, p=0.000

Figure 4. Levels of nucleosomes in serum correlate with those of inflammatory cytokines. Serum was separated from blood taken from
140 healthy subjects (age 15–-70 years) and nucleosome levels were measured using the Cell Death Detection ELISAPlus kit. Flow
cytometric evaluation of interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) levels in the serum were performed using cytometric bead
array assay kit. Serum nuclesome values are expressed as arbitrary units.

r=0.400, p=0.000

Figure 5. Levels of nucleosomes in serum increase with age.
Serum was separated from blood taken from 140 healthy subjects
(age 15–70 years) and nucleosomes levels were measured using the
Cell Death Detection ELISAPlus kit. Values are expressed as arbi-
trary units.
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biological connection between CNAs and the ageing
process.

6. Are CNAs harmful to the host?

Currently, the biological effects of CNAs are unknown and
this area has remained largely unaddressed. We have sum-
marized in our review the body of evidence that suggests that
DNA, nucleosomes, RNA and mitochondria, that have been
derived from sources other than plasma or serum, can have
diverse biological and pathological activities in vitro and in
vivo. Although nucleic acids in circulation are highly frag-
mented, and to that extent are physically distinct from
nucleic acids that have been generally used under experi-
mental conditions, the tantalizing question remains as to
whether CNAs can have biological activities similar to
nucleic acids derived from other sources and be of patho-
physiological relevance to the host.

From our review, the biological actions of nucleic acids
can be summarized as follows: (1) Eukaryotic cells can take
up exogenously added nucleic acids in vitro and in vivo; (2)
exogenously added nucleic acids can get incorporated into
the nuclei of host cells in vitro and in vivo and can be
transcribed; (3) exogenously added nucleic acids can cause
genetic transformation of the recipient cells, albeit rarely; (4)
exogenously added nucleic acids can cause chromosomal
damage and cytotoxic changes in the recipient cells; (5)
DNA that contain oncogenes can transform recipient cells
in culture; (6) exogenously added DNA and nucleosomes
can trigger induction of pro-inflammatory cytokines; (7)
nucleosomes can induce the production of auto-antibodies;
and (8) exogenously added RNA can be taken up by the cells
and are capable of being transcribed and translated into
proteins.

CNAs are elevated in several disease conditions, which
can be broadly categorized as follows: (1) ageing and age-
related degenerative disorders including cancer; (2) acute
and chronic inflammatory conditions; (3) severe trauma
and (4) auto-immune disorders. Our review of the literature
suggests the possibility that CNAs, like exogenous nucleic
acids, can be taken up by tissue cells. Once inside the cells,
CNAs may induce a DNA-damage-repair response that
could facilitate their integration into the host cell genomes
by homologous recombination. By acting as potential DNA-
damaging agents, CNAs could continually damage DNA of
healthy cells of the body throughout life to promote progres-
sive cellular ageing in vivo (Campisi and Vijg 2009). CNAs-
induced DNA damage may also be implicated in multiple
ageing-related disorders such as cancer, diabetes, athero-
vascular conditions and Alzheimer’s disease, all of which
are known to exhibit increased cellular DNA damage
(Stephens et al. 2009; Blasiak et al. 2004; Mahmoudi et al.
2006; Shackelford 2006). It had been observed that

infectious DNA from tumour-forming polyoma virus and
pneumococcal-transforming DNA could be recovered from
blood of mice in biologically active form after intra-
peritoneal injection. It was proposed that metastatic spread
of cancer may possibly involve circulating tumourigenic
DNA (Bendich et al. 1965). This proposal is similar to the
hypothesis of ‘geno-metastasis’, which is based on the ob-
servation that sera from colon cancer patients carrying K-ras
mutation can transform mouse fibroblast cells, and that K-ras
sequences could be detected in the latter by PCR (García-
Olmo et al. 2010). Inflammation produced by CNAs, or
by nucleic acids liberated from dying cells, may induce
sterile inflammation. A strong association between in-
flammation and cancer is well recorded (Coussens and Werb
2002). Sterile inflammation has also been implicated in
arthrosclerosis, diabetes, Alzheimer’s disease, ischaemia-
perfussion injury and trauma (Chen and Nuñez 2010). Clear-
ly, further research is warranted to study the biological and
pathological roles of CNAs which may help to elucidate the
mechanisms underlying various common disorders that have
remained elusive thus far.
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